python毕设 基于协同过滤的个性化旅游推荐系统程序+论文

本系统(程序+源码+数据库+调试部署+开发环境)论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

一、选题背景

关于旅游推荐系统的研究,现有研究主要以传统推荐算法为主,如基于内容的推荐算法在旅游推荐系统中的应用。专门针对协同过滤算法在旅游推荐系统中的研究较少。在国内外的研究现状中,传统旅游推荐系统存在一定局限性,例如对于用户个性化需求挖掘不足等问题。目前存在的争论焦点在于如何提高推荐的准确性和个性化程度,一些观点认为增加更多的用户属性特征能提高准确性,另一些观点则强调挖掘用户间潜在关系的重要性。本选题将以旅游领域为研究情景,重点分析和研究基于协同过滤算法构建旅游推荐系统的问题,以期探寻提高旅游推荐个性化和准确性的问题原因及机制等,提出对策建议,为后续更加深入的研究提供基础。随着旅游行业的发展,游客数量不断增加,对于精准的旅游推荐需求也日益增长,所以研究该问题具有一定价值。 [1]

二、研究意义

本选题针对旅游推荐准确性和个性化等问题的研究具有重要的理论意义和现实意义。

  • 理论意义:本选题研究将深入剖析协同过滤算法在旅游推荐系统中的应用原理,进一步丰富推荐系统相关理论基础。通过对协同过滤算法在旅游场景下的深入研究,有助于完善推荐算法理论体系。
  • 现实意义:随着旅游市场的不断扩大,游客面临众多旅游选择时往往不知所措。基于协同过滤算法的个性化旅游推荐系统能够根据用户的历史偏好以及其他相似用户的选择,为用户提供更个性化、精准的旅游景点、景区推荐。这有助于提高用户旅游体验,同时也有利于旅游企业更好地满足市场需求,提高市场竞争力。 [1]

三、研究方法

  • 文献分析法:查阅国内外关于协同过滤算法、旅游推荐系统的相关文献资料,了解已有研究成果、存在的问题以及研究趋势等,为自己的研究提供理论基础和参考依据。例如,通过对相关学术论文、行业报告的分析,掌握协同过滤算法在不同领域应用的优缺点。
  • 问卷调查法:设计问卷对旅游用户进行调查,收集用户的旅游偏好、旅游习惯、对现有旅游推荐系统的满意度等数据。这些数据将作为协同过滤算法的输入,以便更好地构建个性化推荐模型。
  • 案例研究法:选取一些已经应用了推荐系统的旅游企业或平台作为案例进行研究,分析它们在使用推荐系统过程中的成功经验和存在的问题,为基于协同过滤算法的旅游推荐系统的构建提供实践参考。 [1]

四、研究内容

  • 用户相关功能研究
    • 用户画像构建:通过用户注册信息、历史旅游行为(如去过的景点、旅游时间、消费金额等)构建用户画像,为协同过滤算法提供基础数据。
    • 用户偏好分析:分析用户对不同类型景点(如自然风光、历史文化、休闲娱乐等)、景区的偏好程度,以便准确地进行个性化推荐。
  • 景点相关功能研究
    • 景点分类体系构建:建立科学合理的景点分类体系,例如按照地理位置、景点特色等进行分类,方便协同过滤算法进行相似度计算。
    • 景点信息挖掘:挖掘景区的各种信息,如景区的热门景点、配套设施、周边交通等,为推荐提供更多依据。
  • 推荐系统核心功能研究
    • 算法选型与改进:根据旅游数据的特点选择合适的协同过滤算法(基于用户或基于物品),并针对旅游推荐场景对算法进行改进,如优化相似度计算方法。
    • 推荐结果评估:建立评估指标体系(如准确率、召回率等)对推荐结果进行评估,不断优化推荐系统的性能。

五、拟解决的主要问题

  • 数据处理方面:旅游数据来源广泛,包括各大旅游网站、旅行社、景区等,数据格式不统一,整合难度较大。需要建立数据采集框架,对不同来源的数据进行规范化处理,采用数据清洗、转换等技术提高数据质量。
  • 用户数据问题:用户的旅游偏好数据可能存在不完整、不准确的情况,影响协同过滤算法的效果。通过设计合理的用户反馈机制,鼓励用户完善个人旅游偏好信息,同时采用数据挖掘技术对不完整数据进行补充。
  • 冷启动问题:协同过滤算法存在冷启动问题,对于新用户或新景点难以提供有效的推荐。采用混合推荐策略,结合基于内容的推荐算法解决冷启动问题,例如在新用户注册时,根据用户填写的基本信息(如年龄、性别等)进行初步的基于内容的推荐。

六、研究方案

(一)可能遇到的困难和问题

  • 数据获取与整合困难:旅游相关数据来源众多且格式各异,获取完整准确的数据并进行有效整合具有挑战性。
  • 算法优化挑战:确保协同过滤算法在旅游推荐场景下的准确性和高效性,对算法进行改进以适应不同情况是一个难点。
  • 新用户和新景点推荐:解决协同过滤算法的冷启动问题,使新用户能快速得到有效推荐,新景点能被合理推荐。

(二)解决的初步设想

  • 数据处理方面
    • 建立数据采集框架,对不同来源的数据进行规范化处理,采用数据清洗、转换等技术提高数据质量。
    • 利用分布式计算技术(如MapReduce)对大规模数据进行并行处理,提高算法的计算效率。
  • 算法优化方面:通过深入研究协同过滤算法的原理和旅游数据的特点,不断调整算法参数,优化相似度计算方法等。
  • 冷启动问题解决:采用混合推荐策略,结合基于内容的推荐算法解决冷启动问题,例如在新用户注册时,根据用户填写的基本信息(如年龄、性别等)进行初步的基于内容的推荐。

七、预期成果

  • 系统成果:成功构建基于协同过滤的个性化旅游推荐系统,该系统能够根据用户的历史旅游数据和偏好,准确地为用户推荐个性化的旅游景点。系统具备良好的用户体验,界面友好,操作便捷。
  • 理论成果:对协同过滤算法在旅游推荐系统中的应用有更深入的理解,提出一些针对旅游推荐场景下协同过滤算法的改进方法,为推荐系统相关理论研究做出一定贡献。
  • 实践成果:通过案例分析和实际应用测试,验证所构建的旅游推荐系统在提高旅游企业市场竞争力、提升用户旅游体验方面的有效性,为旅游企业提供一种有效的营销和服务手段。

进度安排:

2023年12月: 查看相关资料、技术,准备技术文档,做好需求分析;下发任务书;

2024年01月: 撰写开题报告,并制定软件开发计划,初步设计软件功能架构;

2024年02月: 根据需求分析,进行详细设计;初步设计软件部分功能,完成开题报告;

2024年03月: 对软件前,后台系统功能进行开发,完成软件各个功能模块,撰写论文初稿;

2024年04月:进行系统测试、论文初稿完成、和指导教师沟通,上交初稿,查重,中期检查;

2024年05月:修改论文,完成定稿,软件功能全部实现、测试、界面美化,上交论文资料,参加答辩。

参考文献:

[1] Hamed Tahmooresi, A. Heydarnoori et al. "An Analysis of Python's Topics, Trends, and Technologies Through Mining Stack Overflow Discussions." arXiv.org (2020).

[2] 韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.

[3] Sebastian Bassi. "A Primer on Python for Life Science Researchers." PLoS Comput. Biol. (2007).

[4] Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.

[5] 程俊英. "基于Python语言的数据分析处理研究"[J]. 电子技术与软件工程, 2022, No.233(15): 236-239.

[6] 曾浩. "基于Python的Web开发框架研究"[J]. 广西轻工业, 2011, 27(08): 124-125+176.

[7] Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).

[8] 陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.

[9] 阿不都艾尼·阿不都肉素力. "Python的计算机软件应用技术分析"[J]. 电脑编程技巧与维护, 2021, No.435(09): 29-30+58.

[10] 张楠. "Python语言及其应用领域研究"[J]. 科技创新导报, 2019, 16(17): 122-123.

[11] 王雄伟, 侯海珍. "大数据专业Python程序设计课程建设探究"[J]. 知识窗(教师版), 2023, (10): 117-119.

[12] 朱向阳. "高中信息技术python项目式教学路径分析"[J]. 高考, 2023, (24): 126-128.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端Vue.jsHTMLCSSJavaScript后端技术栈

后端:Python 3.7.7Django MySQL5.7

开发工具PyCharm社区版、Navicat 11以上版本

系统开发流程

• 使用HTML、CSS和JavaScript结合Vue.js构建前端界面。

• 使用Python语言结合Django框架开发RESTful API。

• 利用MySQL数据库进行数据存储和查询。

• 通过PyCharm IDE进行代码编写、调试和项目管理。

毕设使用者指南

系统概览

本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。

前端使用指南

1.界面导航

  • 主页:展示系统的主要功能和概览信息。
  • 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。

2. 交互操作

  • 使用HTMLCSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
  • 利用JavaScriptVue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。

后端服务指南

1. API使用

  • 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
  • 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。

2. 数据管理

  • 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
  • 用户可以通过系统界面或API访问数据库中的数据。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值