脑机接口BCI数据采集方案:实用技巧与代码实现
引言
脑机接口(BCI)技术通过直接解读大脑活动信号,为人机交互开辟了全新路径。在BCI系统中,数据采集是连接大脑与计算机的关键环节。本文将从硬件选择、软件工具、预处理技术、代码实现到应用场景,全面解析BCI数据采集的核心技巧,并辅以代码和图示说明。
一、硬件选择:从EEG到侵入式电极
1.1 非侵入式EEG设备
- 优势:便携、低成本、适合日常场景。
- 技术挑战:信号易受肌电伪迹干扰。
- 解决方案:采用自适应滤波器(如NLMS算法)去除干扰。
- 设备示例:OpenBCI、NeuroSky。
1.2 侵入式电极
- 优势:信号精度高,适合医疗场景。
- 代表技术:Neuralink的柔性电极。
- 挑战:手术风险、长期稳定性问题。
二、软件工具:开源框架与专用工具箱
2.1 BCI-Framework
- 功能:支持EEG/EMG/ECG信号采集、实时处理与可视化。
- 特点:基于Python,分布式处理,适合科研与工程。
- 代码示例:
from bci_framework import BCI_System
#