Spark中宽依赖和窄依赖的区别

Spark中宽依赖和窄依赖
窄依赖:RDD的每个分区仅依赖一个父RDD的分区;
宽依赖:RDD的每个分区依赖多个父RDD的分区;



那么为什么要区分窄依赖和宽依赖呢?
窄依赖在划分Stage时,可以划分在一起,而且可以并行计算,并且在数据恢复时只需要重新计算父RDD即可,恢复方便。而宽依赖则不然,因为宽依赖的范围较广,必须重新计算所有的父RDD依赖,计算量大,不容易恢复。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shadon178

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值