Monkey and Banana
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 13827 Accepted Submission(s): 7274
Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
Sample Input
1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0
Sample Output
Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342
Source
Recommend
感觉这题像是《算法竞赛入门》里的矩形嵌套,在这之上添加了一个height量来作为最后的输出判定,动态规划题。
题意为让一个猴子用blocks来叠塔取心爱的香蕉,越高越好,但是叠塔时有要求:上面的block底面积要严格小于下面block的底面积,所谓严格小于就是底面的长和宽都要小于,不能是等于。每一个block都有三种不同(或相同)的面,所以我们分别记录下长、宽、高的三种情况,用sort以面积递减的方式将所有block的面进行排序。这步之后,只需要进行寻找最大递减序列的步骤就可以了(加上长宽的判断)
附上代码:
#include<iostream>
#include<algorithm>
using namespace std;
struct block
{
int area;
int height;
int width;
int length;
};
bool cmp(block a,block b)
{
return a.area>b.area;
}
int main()
{
int n,l,w,h,k;
block b[100];
int mh[300];//用来记录高度
int s=1;
while(cin>>n&&n!=0)
{
k=0;
for(int i=0;i<n;i++)
{
cin>>l>>w>>h;
b[k].length=l;
b[k].width=w;
b[k].area=l*w;
b[k++].height=h;
b[k].length=l;
b[k].width=h;
b[k].area=l*h;
b[k++].height=w;
b[k].length=w;
b[k].width=h;
b[k].area=w*h;
b[k++].height=l;
}
sort(b,b+n*3,cmp);
mh[0]=b[0].height;
for(int i=1;i<n*3;i++)
{
mh[i]=b[i].height;
for(int j=0;j<i;j++)//面积不能大于处在下面的block
{
if((b[i].width<b[j].width&&b[i].length<b[j].length)||(b[i].width<b[j].length&&b[i].length<b[j].width))
if(mh[j]+b[i].height>mh[i])
mh[i]=mh[j]+b[i].height;
}
}
int max=0;
for(int i=0;i<n*3;i++)
{
if(mh[i]>max)
max=mh[i];
}
cout<<"Case "<<s<<": maximum height = "<<max<<endl;
s++;
}
return 0;
}