https://codingcompetitions.withgoogle.com/kickstart/round/000000000019ff43/0000000000337b4d
这类似的题去年暑假就见过了,然而没写过。。。导致现场推了好久才写出来,不然应该更快,就不会只有200+名了。。。
对每个线段树节点维护两组值,第一组cnt[2]是这一段+-+-..的和,第二组sum[2]是这一段+1-2+3-4..的和
每一组还要维护开头符号是+的和是-的两种情况
考虑我们要求query(l,r,f)表示开头是f={1,2}的[l,r]的甜蜜值
设mid=(r-l+1),前半段的长度len=(mid-len+1)
如果len&1,那么说明后半段开头的符号要取反
那么query(l,r,f)=query(l,mid,f)+query(mid+1,r,3-f)+[mid+1,r].cnt*len
因为+1 -2 +3 -4 +5 -6,你把[4,6]*3就去掉了-3 +3 -3 ,那么右边的区间又变成-1+2-3,就变成了子问题
符号不取反也是差不多的分析法
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxl=3e5+10;
int n,q,m,cas,top;
__int128 ans;
int a[maxl],b[maxl],s[maxl];
bool in[maxl];
struct node
{
int l,r;
ll cnt[3];
ll sum[3];
}tree[maxl<<2];
struct par
{
ll cnt,sum;
};
char op[2];
inline void push_up(int k)
{
if(tree[k].l==tree[k].r)
return;
int mid=(tree[k].l+tree[k].r)>>1,len=(mid-tree[k].l+1);
if(len&1)
{
tree[k].cnt[1]=tree[k<<1].cnt[1]+tree[k<<1|1].cnt[2];
tree[k].cnt[2]=tree[k<<1].cnt[2]+tree[k<<1|1].cnt[1];
tree[k].sum[1]=tree[k<<1].sum[1]+len*tree[k<<1|1].cnt[2]+tree[k<<1|1].sum[2];
tree[k].sum[2]=tree[k<<1].sum[2]+len*tree[k<<1|1].cnt[1]+tree[k<<1|1].sum[1];
}
else
{
tree[k].cnt[1]=tree[k<<1].cnt[1]+tree[k<<1|1].cnt[1];
tree[k].cnt[2]=tree[k<<1].cnt[2]+tree[k<<1|1].cnt[2];
tree[k].sum[1]=tree[k<<1].sum[1]+len*tree[k<<1|1].cnt[1]+tree[k<<1|1].sum[1];
tree[k].sum[2]=tree[k<<1].sum[2]+len*tree[k<<1|1].cnt[2]+tree[k<<1|1].sum[2];
}
}
inline void build(int k,int l,int r)
{
tree[k].l=l;tree[k].r=r;
if(l==r)
{
tree[k].cnt[1]=a[l];
tree[k].cnt[2]=-a[l];
tree[k].sum[1]=a[l];
tree[k].sum[2]=-a[l];
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
push_up(k);
}
inline void prework()
{
scanf("%d%d",&n,&q);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
build(1,1,n);
}
inline void upd(int k,int l,int x)
{
if(tree[k].l==tree[k].r)
{
a[l]=x;
tree[k].cnt[1]=a[l];
tree[k].cnt[2]=-a[l];
tree[k].sum[1]=x;
tree[k].sum[2]=-x;
return;
}
int mid=(tree[k].l+tree[k].r)>>1;
if(l<=mid)
upd(k<<1,l,x);
else
upd(k<<1|1,l,x);
push_up(k);
}
inline par qry(int k,int l,int r,int f)
{
par ret,d;ret.cnt=0;ret.cnt=0;
if(tree[k].l==l && tree[k].r==r)
{
ret.cnt=tree[k].cnt[f];
ret.sum=tree[k].sum[f];
return ret;
}
int mid=(tree[k].l+tree[k].r)>>1,len=(mid-l+1);
if(r<=mid)
{
d=qry(k<<1,l,r,f);
ret.cnt=d.cnt;
ret.sum=d.sum;
}
else if(l>mid)
{
d=qry(k<<1|1,l,r,f);
ret.cnt=d.cnt;
ret.sum=d.sum;
}
else
{
d=qry(k<<1,l,mid,f);
ret.cnt=d.cnt;
ret.sum=d.sum;
if(len&1)
d=qry(k<<1|1,mid+1,r,3-f);
else
d=qry(k<<1|1,mid+1,r,f);
ret.cnt+=d.cnt;
ret.sum+=len*d.cnt+d.sum;
}
return ret;
}
inline void mainwork()
{
int x,y;par d;ans=0;
for(int i=1;i<=q;i++)
{
scanf("%s%d%d",op,&x,&y);
if(op[0]=='U')
upd(1,x,y);
else
{
d=qry(1,x,y,1);
ans+=d.sum;
}
}
}
inline void print()
{
printf("Case #%d: ",cas);
top=0;
if(ans==0)
s[++top]=0;
else
{
if(ans<0)
{
ans=-ans;
putchar('-');
}
while(ans>0)
s[++top]=ans%10,ans/=10;
}
for(int i=top;i>=1;i--)
printf("%d",s[i]);
puts("");
}
int main()
{
int t=1;
scanf("%d",&t);
for(cas=1;cas<=t;cas++)
{
prework();
mainwork();
print();
}
return 0;
}