1040. 移动石子直到连续 II 思维题

1040. 移动石子直到连续 II 思维题

思路

思路

有补充的思路在代码注释中阐明。

代码

执行用时:16 ms, 在所有 C++ 提交中击败了95.45%的用户

内存消耗:11.9 MB, 在所有 C++ 提交中击败了59.09%的用户

class Solution {
public:
    // 缩小左边端点和右边端点的距离
    vector<int> numMovesStonesII(vector<int>& stones) {
        int n=stones.size();
        // n>=3
        sort(stones.begin(),stones.end());
        // 计算空白格子
        int resMax=stones[n-1]-stones[0]+1-n;
        resMax-=min(stones[n-1]-stones[n-2],stones[1]-stones[0])-1;
        vector<int>res(2);
        res[1]=resMax;

        int resMin=0;
        // 找到含有元素最多的长度为n的窗口
        // 这个窗口的最左端或者最右端一定是一个stones[]中的石子所在的位置
        // 假设这个窗口的最左端是一个石子,石子在left的位置,这个窗口最右边的位置是right
        //  第一种情况,这个窗口的最右边的右边(>right的位置)有一个石子,那么窗口在left的位置肯定比在stones[left-1]的位置好
        //      要是left-1的位置上有石子,这个窗口不如左移
        //  第二种情况,这个窗口的最右边的右边(>right)没有石子了,但是right的位置有一个石子,这样和第一种情况类似
        //  第三种情况,这个窗口的最右边的右边(>right)没有石子了,但是(<right)的位置pos有一个石子,这个石子是窗口内的最后一个石子,这样想要完成最小的移动,不如让窗口的最右端去对准pos这个地方的石子。
        // 特殊情况,例如1,2,3,4,6,需要移动两次
        
        // 结果,总元素数目-窗口内最多的元素数目
        // 特殊情况需要移动两次
        
        // 寻找最大的窗口
        int num;
        int maxNum=0;   // 窗口内最大的元素的个数
        res[0]=res[1];  // 初始化为最大值
        for(int i=0;i<n;i++){
            num=stones[i]+n-1;
            int j=i+1;
            while(j<n&&stones[j]<=num){ // 可以二分
                j++;
            }

            maxNum=max(maxNum,j-i);
            res[0]=min(n-maxNum,res[0]);
            if(j-i==n-1&&stones[j-1]-stones[i]+1==n-1){ // 特殊情况处理
                res[0]=2;
                break;
            }
        }
        res[0]=min(res[0],res[1]);  // 可能结果为0,上面却break2出来了
        return res;
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
做如下两个模型的石子合并,如下模型石子都不能移动出列,且合并都仅发生在相邻两堆石子中: (1)第一个模型:一行排列且相邻合并 有n堆石子形成一行(a1,a2,…,an,ai为第i堆石子个数),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 (2)第二个模型:一圈排列且相邻合并 有n堆石子形成首位相连的一个环形(a1,a2,…,an,ai为第i堆石子个数,an和a1相邻),相邻两堆可合并,合并的分值为新堆的石子数。求合并为一堆的最低得分和最高得分。 例如4堆石子,每堆石子个数:9 4 4 5 若排成一行,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+4)+(13+4)+(17+5)=52。 若排成圈状,最小分值:(4+4)+(8+5)+(9+13)=43,最大分值:(9+5)+(14+4)+(18+4)=54。 此以第一模型的最低得分为例,很多同学想着采用总是从最小的相邻两堆下手的思想,最后获得的也就是最低得分。但这个贪心策略是不对的。 如下反例: 石子:9 4 6 1 5 贪心策略: 9 4 6 6 6 9 10 6 10 9 16 16 25 25 得分共计:6+10+16+25=57 但9 4 6 1 5 若如下方式合并: 13 6 1 5 13 13 6 6 6 13 12 12 25 25 13+6+12+25=56 或 9 4 6 6 6 9 4 12 12 13 12 13 25 25 6+12+13+25=56 后两种方式合并出的56都比贪心策略的57来的更低,因为总选择最小的相邻两堆去合并,并不能保证后续每步都可以最小,也许这轮最小导致后续几轮分值较大。 Input 两行。第一行n,第二行a1 a2 … an,每个ai(1<=i<=n)表示第i堆石子的个数,n<=100 Output 两行。第一行是第一个模型的最低得分和最高得分,中间空格相连,第二行是第二个模型的最低得分和最高得分,中间空格相连。 Sample Input 4 9 4 4 5 Sample Output 43 52 43 54 Hint 第一个石子合并模型,和书上3.1节的矩阵连乘问类似. 假设m[i,j]为合并石子ai…aj, 1≤i≤j≤n,所得到的最小得分,若没有“合并”这个动作,则为0。原问所求的合并最小值即为m[1,n]。 递推公式如下,其中min表示求最小,sum表示求和. (1) m[i,j]=0, if i=j (2) m[i,j]=min{m[i,k]+m[k+1][j] | for i<=k<j} + sum{a(t) | for i<=t<=j}, if i<j 至于求最大值完全同理. 至于第二个石子合并的环行模型,完全可以转化为第一个模型来求解.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值