PyCharm入门学习笔记(四)模型的使用

一、如何使用和修改现有网络模型?

1.1 参数pretrained 为false和true时的区别?

vgg16_false = torchvision.models.vgg16(pretrained = False) #False,下载的是网络模型,默认参数
vgg16_true = torchvision.models.vgg16(pretrained = True) #True,下载的是网络模型,并且在数据集上面训练好的参数。

1)pretrained=False时,只是加载网络模型,把神经网络的代码加载了进来,其中的参数都是默认的参数,不需要下载。
2)pretrained=True时,它就要去从网络中下载,比如说卷积层对应的参数时多少,池化层对应的参数时多少等。这些参数都是在 ImageNet 数据集中训练好的。

1.2 使用和修改现有网络模型(例:vgg16)

import torchvision
from torch import nn

vgg16_false = torchvision.models.vgg16(pretrained=False)
vgg16_true = torchvision.models.vgg16(pretrained=True)
print(vgg16_true)

train_data = torchvision.datasets.CIFAR10('./dataset_ts', train=True, transform=torchvision.transforms.ToTensor(), download=True)

# vgg16最后训练出的模型为100个类别,而CIFAR10为10个类别,我们应该如何修改?
# 我们需要在线性层后面在加一个线性层,或者直接修改
# 1)要在vgg16的classifier下加一层模型
# 名叫add_linear的module名,in_feature=1000,out_feature=10
vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))
print(vgg16_true)

print(vgg16_false)
# 2)修改最后一行结构为out_feature=10
vgg16_false.classifier[6] = nn.Linear(4096, 10)
print(vgg16_false)

二、模型的保存和加载

import torch
import torchvision

vgg16 = torchvision.models.vgg16(weights=None)
# 保存方式1:保存模型结构和参数
torch.save(vgg16, "vgg16_method1.pth")

# 保存方式2:保存模型参数(将参数用字典形式保存)(官方推荐)
torch.save(vgg16.state_dict(), "vgg16_method2.pth")


# 加载方式1:
model1 = torch.load("vgg16_method1.pth")
print(model1)

# 加载方式2:
# 用第2种保存方式,如果想要恢复模型结构使用load_state_dict;否则,将以字典形式读入
model2 = torchvision.models.vgg16(weights=None)
model2.load_state_dict(torch.load("vgg16_method2.pth"))
print(model2)

# 加载方式1存在一个陷阱
# 在加载自己定义的模型时,需要导入该模型的类:from 自定义模型类 import *

三、完整的训练模型套路

3.1 构建自己的模型model.py

import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear


class Mymodel(nn.Module):
    def __init__(self):
        super(Mymodel, self).__init__()
        # 这里构建CIFAR 10 model结构
        self.model = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),  # 64*4*4=1024
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


if __name__ == '__main__':
    mymodel = Mymodel()
    input = torch.ones((64, 3, 32, 32))
    output = mymodel(input)
    print(output.shape)

3.2 训练过程

import torch
import torchvision

from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *

# 1. 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True,
                                          transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False,
                                         transform=torchvision.transforms.ToTensor(), download=True)
# 2. length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 常用format这种方式输出训练集长度
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 3. 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 4. 搭建神经网络
mymodel = Mymodel()

# 5. 损失函数
loss_fn = nn.CrossEntropyLoss()

# 6. 优化器:设置学习速率为0.01
learning_rate = 1e-2
optimzer = torch.optim.SGD(mymodel.parameters(), lr=learning_rate)

# 7. 设置训练网络的一些参数:训练次数,测试次数,训练轮数
total_train_step = 0
total_test_step = 0
epoch = 10

# 添加tensorboard
writer = SummaryWriter("logs")

# 8. 开始训练
for i in range(epoch):
    print("-----第{}轮训练开始-----".format(i + 1))
    # 1)训练步骤开始
    mymodel.train()  # 当模型中出现特殊的层时使用,比如Dropout,BatchNorm等
    for data in train_dataloader:
        imgs, targets = data
        outputs = mymodel(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器模型
        optimzer.zero_grad()
        loss.backward()
        optimzer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            print("训练次数:{},loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 2)测试步骤开始
    mymodel.eval()  # 当模型中出现特殊的层时使用,比如Dropout,BatchNorm等
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 使用这个测试记录不会保存在网络中
        for data in test_dataloader:
            imgs, targets = data
            outputs = mymodel(imgs)
            # loss
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            # 正确率accuracy:
            # argmax为1表示横向最大的下标,为0表示纵向
            # 判断输出与输入是否为同一个类别
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
            
    print("整体测试集上的loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    # 保存模型:这里利用的是第一种保存方式
    torch.save(mymodel, "mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()

3.3 结果展示

这里可以看出随着训练的进行loss不断减小。因为训练时间过长,这里只展示测试前几轮。
在这里插入图片描述

四、使用GPU加速

GPU的使用:

  1. 第一种方式:对 网络模型、loss、数据 调用.cuda()即可
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear

from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# GPU的使用:
# 第一种方式:对 网络模型、loss、数据 调用.cuda()即可
# 谷歌线上使用GPU工具:google colab,也有其他工具


# 1. 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True,
                                          transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False,
                                         transform=torchvision.transforms.ToTensor(), download=True)
# 2. length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 常用format这种方式输出训练集长度
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 3. 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

# 4. 搭建神经网络
class Mymodel(nn.Module):
    def __init__(self):
        super(Mymodel, self).__init__()
        # 这里构建CIFAR 10 model结构
        self.model = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),  # 64*4*4=1024
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

mymodel = Mymodel()
if torch.cuda.is_available():
    mymodel = mymodel.cuda()

# 5. 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
    loss_fn = loss_fn.cuda()

# 6. 优化器:设置学习速率为0.01
learning_rate = 1e-2
optimzer = torch.optim.SGD(mymodel.parameters(), lr=learning_rate)

# 7. 设置训练网络的一些参数:训练次数,测试次数,训练轮数
total_train_step = 0
total_test_step = 0
epoch = 10

# 添加tensorboard
writer = SummaryWriter("logs")

# 8. 开始训练
start_time = time.time()
for i in range(epoch):
    print("-----第{}轮训练开始-----".format(i + 1))
    # 1)训练步骤开始
    mymodel.train()  # 当模型中出现特殊的层时使用,比如Dropout,BatchNorm等
    for data in train_dataloader:
        imgs, targets = data
        if torch.cuda.is_available():
            imgs = imgs.cuda()
            targets = targets.cuda()
        outputs = mymodel(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器模型
        optimzer.zero_grad()
        loss.backward()
        optimzer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("所用时间:{}".format(end_time-start_time))
            print("训练次数:{},loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 2)测试步骤开始
    mymodel.eval()  # 当模型中出现特殊的层时使用,比如Dropout,BatchNorm等
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 使用这个测试记录不会保存在网络中
        for data in test_dataloader:
            imgs, targets = data
            if torch.cuda.is_available():
                imgs = imgs.cuda()
                targets = targets.cuda()
            outputs = mymodel(imgs)
            # loss
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            # 正确率accuracy:
            # argmax为1表示横向最大的下标,为0表示纵向
            # 判断输出与输入是否为同一个类别
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    # 保存模型:这里利用的是第一种保存方式
    torch.save(mymodel, "mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()
  1. 第二种方式:
    1)定义一个device = torch.device(“cuda”)
    2)然后 网络模型、loss、数据 调用.to(device)
import torch
import torchvision
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear

from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time

# GPU的使用:
# 第二种方式:
# 1)定义一个device = torch.device("cuda")
# 2)然后 网络模型、loss、数据 调用.to(device)


# 定义GPU训练设备
device = torch.device("cuda")
# 1. 准备数据集
train_data = torchvision.datasets.CIFAR10("./dataset", train=True,
                                          transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False,
                                         transform=torchvision.transforms.ToTensor(), download=True)
# 2. length长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 常用format这种方式输出训练集长度
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))

# 3. 利用DataLoader加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)


# 4. 搭建神经网络
class Mymodel(nn.Module):
    def __init__(self):
        super(Mymodel, self).__init__()
        # 这里构建CIFAR 10 model结构
        self.model = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),  # 64*4*4=1024
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


mymodel = Mymodel()
mymodel = mymodel.to(device)

# 5. 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)

# 6. 优化器:设置学习速率为0.01
learning_rate = 1e-2
optimzer = torch.optim.SGD(mymodel.parameters(), lr=learning_rate)

# 7. 设置训练网络的一些参数:训练次数,测试次数,训练轮数
total_train_step = 0
total_test_step = 0
epoch = 10

# 添加tensorboard
writer = SummaryWriter("logs")

# 8. 开始训练
start_time = time.time()
for i in range(epoch):
    print("-----第{}轮训练开始-----".format(i + 1))
    # 1)训练步骤开始
    mymodel.train()  # 当模型中出现特殊的层时使用,比如Dropout,BatchNorm等
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.to(device)
        targets = targets.to(device)
        outputs = mymodel(imgs)
        loss = loss_fn(outputs, targets)
        # 优化器模型
        optimzer.zero_grad()
        loss.backward()
        optimzer.step()

        total_train_step = total_train_step + 1
        if total_train_step % 100 == 0:
            end_time = time.time()
            print("所用时间:{}".format(end_time - start_time))
            print("训练次数:{},loss:{}".format(total_train_step, loss.item()))
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 2)测试步骤开始
    mymodel.eval()  # 当模型中出现特殊的层时使用,比如Dropout,BatchNorm等
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():  # 使用这个测试记录不会保存在网络中
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.to(device)
            targets = targets.to(device)
            outputs = mymodel(imgs)
            # loss
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            # 正确率accuracy:
            # argmax为1表示横向最大的下标,为0表示纵向
            # 判断输出与输入是否为同一个类别
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy

    print("整体测试集上的loss:{}".format(total_test_loss))
    writer.add_scalar("test_loss", total_test_loss, total_test_step)
    print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
    writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
    total_test_step = total_test_step + 1

    # 保存模型:这里利用的是第一种保存方式
    torch.save(mymodel, "mymodel_{}.pth".format(i))
    print("模型已保存")

writer.close()

五、完整的模型验证(测试/demo)套路

利用已经训练好的模型给它提供输入

import torchvision
import torch
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from PIL import Image

# 1.读取需要判断图片
image_path = "../imgs/dog.png"
image = Image.open(image_path)
# 原图像是4通道,这里需要转化成3通道
image = image.convert('RGB')
print(image)

transform = torchvision.transforms.Compose(
    [torchvision.transforms.Resize((32, 32)),
     torchvision.transforms.ToTensor()])
image = transform(image)
print(image.shape)
# image是[3, 32, 32]3维的,需要转化成4维的[1, 3, 32, 32]
image = torch.reshape(image, (1, 3, 32, 32))


# 2. 网络模型
class Mymodel(nn.Module):
    def __init__(self):
        super(Mymodel, self).__init__()
        # 这里构建CIFAR 10 model结构
        self.model = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),  # 64*4*4=1024
            Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x


# 3. 用已经训练好的模型(将cuda->cpu),进行判别
model = torch.load("mymodel_0.pth", map_location=torch.device('cpu'))
model.eval()
with torch.no_grad():
    output = model(image)
print(output)
print(output.argmax(1))


根据输出,可以明显可以看出,测试错误;因为我们用的这个模型就训练了一轮,正确率不高;读者可以利用正确率高的模型

<PIL.Image.Image image mode=RGB size=456x336 at 0x266FF3CBC70>
torch.Size([3, 32, 32])
tensor([[-1.7129, -0.1896,  0.6489,  0.7595,  0.8513,  0.9252,  1.1398,  0.4540,
         -2.0718, -1.0213]])
tensor([6])
  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值