聚类:k-Means 和 k-Medoid

1. 前言

《对静态分析缺陷报告进行聚类,以降低维护成本》 提到使用 k-Medoid 通过相似缺陷的聚类,来减少程序员对大量缺陷分析的工作量。

k-Medoid 和传统的 k-Means 聚类算法有什么差别呢?

简单的说,K-Medoid 算法是一种基于 K-Means 算法的聚类方法,它通过选择数据集中的点作为中心(medoid),而不是计算均值来代表聚类中心。这种方法对异常值和噪声更加鲁棒,因为它使用的是实际的数据点作为聚类中心,而不是计算出的均值点。

于是将先前的 K-Means 算法做了改进,实现了 K-Medoid 算法。

2. 聚类算法

  • 聚类基本算法步骤
  1. 初始化:选择K个数据点作为初始的质心。可以使用随机选取,也有很多改进的选取方法,以降低迭代的次数;
  2. 分配:将每个数据点分配给最近的质心,形成K个聚类。
  3. 重新计算新的质心:对于每个聚类,找到一个新的质心。
  4. 迭代:重复步骤2和3,直到满足停止条件,如质心不再改变或达到预设的迭代次数。
  5. 终止:当聚类结果稳定或达到迭代次数后,算法终止。

2.1. K-Means 聚类

K-Means 聚类, 在计算每个簇的质心时, 是使用簇的中心点(均值)。

  • K-Means 聚类的质心计算公式
    对于K-Means聚类,每个簇的质心是该簇内所有点的均值。
    假设第( i )个簇包含 N_i个数据点,每个数据点有( d )个特征。
    第( i )个簇的质心 \mu_i​ 的计算公式为:
    \mu_i = \frac{1}{N_i} \sum_{j \in C_i} x_j

其中:

  • \mu_i​ 是第( i )个簇的质心。
  • N_i 是第( i )个簇中的点的数量。
  • C_i是第( i )个簇中的点的集合。
  • x_j 是第( j )个点的坐标。

  • 特点:
    • 简单,易于实现。
    • 对于大规模数据集效率较高。
    • 对初始中心点的选择敏感,可能导致局部最优解。
    • 对异常值和噪声敏感。

  • 适用场景:
    • 数据分布近似为高斯分布。
    • 需要快速聚类结果的场景。

2.2. K-Medoid 聚类

K-Medoid 聚类, 在计算每个簇的质心时, 由一个实际的数据点(Medoid)代表。

  • K-Medoid 聚类的质心计算公式
    K-Medoid聚类不使用质心的概念,而是使用Medoid。Medoid是簇中与其他点距离之和最小的点。
    因此,K-Medoid算法中没有直接计算质心的公式,而是通过以下步骤确定Medoid:
  1. 对于每个簇,计算每个点到该簇内其他所有点的总距离。
  2. 选择总距离最小的点作为Medoid。

这个过程可以表示为:

\text{medoid}_i = \arg \min_{x_j \in C_i} \sum_{x_k \in C_i} d(x_j, x_k)

其中:

  • \text{medoid}_i 是第 i 个簇的 Medoid。

  • d(x_j, x_k)  是点 x_jx_k 之间的距离。

  • C_i​ 是第( i )个簇中的点的集合。

  • 特点:

    • 对异常值和噪声具有较好的鲁棒性。
    • 计算复杂度较高,因为需要重新计算所有点到 Medoid 的距离。
    • 可以处理非凸形状的聚类。
    • 可能找到全局最优解,因为每次迭代都可能改变 Medoid。
  • 适用场景:

    • 数据分布不规则或包含异常值。
    • 需要更鲁棒的聚类结果。

2.3. K-Means vs K-Medoid

在 K-Medoid 算法中,Medoid 的确定是一个优化问题,需要评估簇内所有点作为 Medoid 时的总距离,并选择使这个总距离最小的点。这个过程通常比 K-Means 中的质心计算更为复杂,因为它涉及到对每个簇内所有点的两两距离计算。

比较项 K-Means K-Medoid
中心点 K-Means使用计算出的中心点 K-Medoid使用实际的数据点作为中心
鲁棒性 K-Means容易受到这些因素的影响 K-Medoid对异常值和噪声更鲁棒
计算复杂度 K-Means通常更快,因为它只需要计算均值 K-Medoid需要计算每个点到Medoid的距离,计算量更大
聚类形状 K-Means倾向于创建圆形或球形的簇 K-Medoid可以适应更复杂的形状
全局最优 对初始中心点的选择敏感,可能导致局部最优解 K-Medoid更可能找到全局最优解,因为它在每次迭代中都重新评估所有点作为Medoid的可能性

3. 基础定义

3.1. 距离计算类型

用于测试不同的距离计算公式对聚类结果的影响。

public enum DistanceEnum {
    EUCLIDEAN("欧氏距离"),
    MANHATTAN("曼哈顿距离"),
    MINKOWSKI("闵可夫斯基距离"),
    CHEBYSHEV("切比雪夫距离"),
    COSINE("余弦距离"),
    OTHERS("其他");

    private String distance;

    private DistanceEnum(String distance) {
        this.distance = distance;
    }
}

3.2. 用例和质心定义

用于存放用例数据或质心。

/**
 * 用例和质心的定义
 */
public class CaseRecord {
    // 用例 id
    private String id;
    // 用例的特征键值
    private Map<String, String> attributeMap;
    // 用例的向量
    private double[] vector;
    // 用例所属的质心
    private CaseRecord center;
    // 距离计算类型
    private DistanceEnum distanceType;
    // 距离值
    private double distance;
    // 聚类用例的数量
    private int clusterSize;
    // F-measure rate
    private Rate rate;
}

3.3. 定义算法接口

根据上面的算法流程,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值