1. 前言
在《对静态分析缺陷报告进行聚类,以降低维护成本》 提到使用 k-Medoid 通过相似缺陷的聚类,来减少程序员对大量缺陷分析的工作量。
k-Medoid 和传统的 k-Means 聚类算法有什么差别呢?
简单的说,K-Medoid 算法是一种基于 K-Means 算法的聚类方法,它通过选择数据集中的点作为中心(medoid),而不是计算均值来代表聚类中心。这种方法对异常值和噪声更加鲁棒,因为它使用的是实际的数据点作为聚类中心,而不是计算出的均值点。
于是将先前的 K-Means 算法做了改进,实现了 K-Medoid 算法。
2. 聚类算法
- 聚类基本算法步骤
- 初始化:选择K个数据点作为初始的质心。可以使用随机选取,也有很多改进的选取方法,以降低迭代的次数;
- 分配:将每个数据点分配给最近的质心,形成K个聚类。
- 重新计算新的质心:对于每个聚类,找到一个新的质心。
- 迭代:重复步骤2和3,直到满足停止条件,如质心不再改变或达到预设的迭代次数。
- 终止:当聚类结果稳定或达到迭代次数后,算法终止。
2.1. K-Means 聚类
K-Means 聚类, 在计算每个簇的质心时, 是使用簇的中心点(均值)。
- K-Means 聚类的质心计算公式
对于K-Means聚类,每个簇的质心是该簇内所有点的均值。
假设第( i )个簇包含个数据点,每个数据点有( d )个特征。
第( i )个簇的质心 的计算公式为:
其中:
是第( i )个簇的质心。
是第( i )个簇中的点的数量。
是第( i )个簇中的点的集合。
是第( j )个点的坐标。
- 特点:
- 简单,易于实现。
- 对于大规模数据集效率较高。
- 对初始中心点的选择敏感,可能导致局部最优解。
- 对异常值和噪声敏感。
- 适用场景:
- 数据分布近似为高斯分布。
- 需要快速聚类结果的场景。
2.2. K-Medoid 聚类
K-Medoid 聚类, 在计算每个簇的质心时, 由一个实际的数据点(Medoid)代表。
- K-Medoid 聚类的质心计算公式
K-Medoid聚类不使用质心的概念,而是使用Medoid。Medoid是簇中与其他点距离之和最小的点。
因此,K-Medoid算法中没有直接计算质心的公式,而是通过以下步骤确定Medoid:
- 对于每个簇,计算每个点到该簇内其他所有点的总距离。
- 选择总距离最小的点作为Medoid。
这个过程可以表示为:
其中:
-
是第 i 个簇的 Medoid。
-
是点
和
之间的距离。
-
是第( i )个簇中的点的集合。
-
特点:
- 对异常值和噪声具有较好的鲁棒性。
- 计算复杂度较高,因为需要重新计算所有点到 Medoid 的距离。
- 可以处理非凸形状的聚类。
- 可能找到全局最优解,因为每次迭代都可能改变 Medoid。
-
适用场景:
- 数据分布不规则或包含异常值。
- 需要更鲁棒的聚类结果。
2.3. K-Means vs K-Medoid
在 K-Medoid 算法中,Medoid 的确定是一个优化问题,需要评估簇内所有点作为 Medoid 时的总距离,并选择使这个总距离最小的点。这个过程通常比 K-Means 中的质心计算更为复杂,因为它涉及到对每个簇内所有点的两两距离计算。
比较项 | K-Means | K-Medoid |
---|---|---|
中心点 | K-Means使用计算出的中心点 | K-Medoid使用实际的数据点作为中心 |
鲁棒性 | K-Means容易受到这些因素的影响 | K-Medoid对异常值和噪声更鲁棒 |
计算复杂度 | K-Means通常更快,因为它只需要计算均值 | K-Medoid需要计算每个点到Medoid的距离,计算量更大 |
聚类形状 | K-Means倾向于创建圆形或球形的簇 | K-Medoid可以适应更复杂的形状 |
全局最优 | 对初始中心点的选择敏感,可能导致局部最优解 | K-Medoid更可能找到全局最优解,因为它在每次迭代中都重新评估所有点作为Medoid的可能性 |
3. 基础定义
3.1. 距离计算类型
用于测试不同的距离计算公式对聚类结果的影响。
public enum DistanceEnum {
EUCLIDEAN("欧氏距离"),
MANHATTAN("曼哈顿距离"),
MINKOWSKI("闵可夫斯基距离"),
CHEBYSHEV("切比雪夫距离"),
COSINE("余弦距离"),
OTHERS("其他");
private String distance;
private DistanceEnum(String distance) {
this.distance = distance;
}
}
3.2. 用例和质心定义
用于存放用例数据或质心。
/**
* 用例和质心的定义
*/
public class CaseRecord {
// 用例 id
private String id;
// 用例的特征键值
private Map<String, String> attributeMap;
// 用例的向量
private double[] vector;
// 用例所属的质心
private CaseRecord center;
// 距离计算类型
private DistanceEnum distanceType;
// 距离值
private double distance;
// 聚类用例的数量
private int clusterSize;
// F-measure rate
private Rate rate;
}
3.3. 定义算法接口
根据上面的算法流程,