题目描述:在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物
解题思路:该题考虑动态规划,考虑每个位置的转移方程有:
dp[i][j] = max(dp[i-1][j],dp[i][j-1]) + grid[i][j];
dp表示设置的状态转移矩阵;grid表示原始的输入矩阵。
但是考虑边界,因为第一行和第一列是不满足这个转移表达式的,所以应该先把第一行和第一列的转移矩阵值先求出来。
代码如下:
class Solution {
public:
int maxValue(vector<vector<int>>& grid) {
int rows=grid.size(),cols = grid[0].size();
//定义一个状态转移矩阵,初始值都设为0;
vector<vector<int>>dp(rows,vector<int>(cols,0));
//转移矩阵的第一个位置值等于输入矩阵的第一个位置值。
dp[0][0]=grid[0][0];
//将第一行处理好。
for(int j=1;j<cols;j++){
dp[0][j] = dp[0][j-1]+grid[0][j];
}
//将第一列处理好。
for(int i=1;i<rows;i++){
dp[i][0] = dp[i-1][0]+grid[i][0];
}
//进行动态规划。
for(int i=1;i<rows;i++){
for(int j=1;j<cols;j++){
//状态转移表达式。
dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
}
}
return dp[rows-1][cols-1];
}
};