剑指 Offer 47. 礼物的最大价值

本文介绍如何使用动态规划解决在一个棋盘上选择路径获取最大礼物价值的问题,通过状态转移方程dp[i][j] = max(dp[i-1][j], dp[i][j-1]) + grid[i][j],并详细展示了代码实现和边界处理。
摘要由CSDN通过智能技术生成

题目描述:在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

解题思路:该题考虑动态规划,考虑每个位置的转移方程有:
dp[i][j] = max(dp[i-1][j],dp[i][j-1]) + grid[i][j];
dp表示设置的状态转移矩阵;grid表示原始的输入矩阵。
但是考虑边界,因为第一行和第一列是不满足这个转移表达式的,所以应该先把第一行和第一列的转移矩阵值先求出来。
代码如下:

class Solution {
public:
    int maxValue(vector<vector<int>>& grid) {
        int rows=grid.size(),cols = grid[0].size();
        //定义一个状态转移矩阵,初始值都设为0;
        vector<vector<int>>dp(rows,vector<int>(cols,0));
        //转移矩阵的第一个位置值等于输入矩阵的第一个位置值。
        dp[0][0]=grid[0][0];
        //将第一行处理好。
        for(int j=1;j<cols;j++){
            dp[0][j] = dp[0][j-1]+grid[0][j];
        }
        //将第一列处理好。
        for(int i=1;i<rows;i++){
            dp[i][0] = dp[i-1][0]+grid[i][0];
        }
        //进行动态规划。
        for(int i=1;i<rows;i++){
            for(int j=1;j<cols;j++){
            //状态转移表达式。
                dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
            }
        }
        return dp[rows-1][cols-1];

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值