CodeForces 687B Remainders Game

给出n个数和一个k值,对于任意的x能不能在知道x mod Ci的前提下得到x mod k的值

对于任意的x可以通过x对ci取余得到一组数字,这组数组一共可以表示m个不同状态,m是所有n个Ci的最小公倍数,而当m是k的倍数的时候,每一个状态都会对应到一组数字,这组数字对k的余数都相等,所以问题就转化成了对n个数字求最小公倍数然后对k取余。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
int c[1000000], n, k;
ll gcd(ll a, ll b) {
    if(b)
        return gcd(b, a % b);
    return a;
}
int judge() {
    ll s = c[0] % k;
    for(int i = 1; i < n; i++) {
        s = s / gcd(s, c[i]) * c[i];
        s %= k;
    }
    if(!s)
        return 1;
    return 0;
}
int main() {
    while(~scanf("%d%d", &n, &k)) {
        for(int i = 0; i < n; i++) {
            scanf("%d", &c[i]);
        }
        if(judge())
            printf("Yes\n");
        else printf("No\n");
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值