BASNet: Boundary-Aware Salient Object Detection
网络结构相对比较简单,官方提供了pytorch的源码和模型,而且在做实验的过程中应该可以考虑去掉后面边界优化部分
Cascaded Partial Decoder for Fast and Accurate Salient Object Detection
网络结构:基于(b)部分
本文官方提供了pytorch源码,
结构(a)作者给出了两篇论文:
- A bidirectional message passing model for salient object detection.(cvpr2018)
- Amulet: Aggregating multi-level convolutional features for salient object detection.(ICCV2017)
A bidirectional message passing model for salient object detection
网络结构:
没有找到源代码
Amulet: Aggregating multi-level convolutional features for salient object detection
网络结构:
有提供基于caffe的代码和模型,网络结构也比上一篇要简单一点
Pyramid Feature Attention Network for Saliency detection
网络结构:
官方提供了基于tensorflow的代码,文章中使用了空洞卷积来扩大感受野
Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection
针对RGB-D图像的显著性方法,提供了基于caffe的源码:https://github.com/JXingZhao/ContrastPrior
可以参考这篇文章是否做了预训练,解决加入坐标信息后可能没有预训练模型可用的问题
另外还简单看了一下程明明的DSS和PoolNet,都是使用到了HED边缘检测结构,模型结构也比较复杂,都DSS提供的是基于caffe的代码,Poolnet提供了基于pytorch的代码和模型。