HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
思路:因为是连续子序列;所以循环求和,将nSum 压栈 push_back到vector中
需要注意:开始求和位置;
#include<iostream>
#include<vector>
using namespace std;
int main()
{
int r,tmp;
cout<<"vector size:";
cin>>r;
vector<int>arr,result;
for(int i=0;i<r;i++){
cin>>tmp;
arr.push_back(tmp);
}
cout<<"输出:"<<endl;
for(int i=0;i<arr.size();i++){
cout<<arr[i]<<" " ;
}
cout<<endl;
int nLen = arr.size();
int nSum=0;
vector<int>v1;
int i=0;
int nCount=0;
for(i;i<nLen;i++)
{
nSum +=arr[i];
v1.push_back(nSum);
if(i==nLen-1)
{
nCount +=1;
nSum=0;
i = nCount;
}
}
cout<<"结果:"<<endl;
for(int i=0;i<v1.size();i++){
cout<<v1[i]<<" " ;
}
cout<<endl;
int nMax = v1[0];
for(int i=0;i<v1.size();i++)
{
if(nMax<v1[i])
nMax = v1[i];
}
cout<< nMax<<endl;
return 0;
}