我叫王大锤,是一名特工。我刚刚接到任务:在字节跳动大街进行埋伏,抓捕恐怖分子孔连顺。和我一起行动的还有另外两名特工,我提议
1. 我们在字节跳动大街的N个建筑中选定3个埋伏地点。
2. 为了相互照应,我们决定相距最远的两名特工间的距离不超过D。
我特喵是个天才! 经过精密的计算,我们从X种可行的埋伏方案中选择了一种。这个方案万无一失,颤抖吧,孔连顺!
……
万万没想到,计划还是失败了,孔连顺化妆成小龙女,混在cosplay的队伍中逃出了字节跳动大街。只怪他的伪装太成功了,就是杨过本人来了也发现不了的!
请听题:给定N(可选作为埋伏点的建筑物数)、D(相距最远的两名特工间的距离的最大值)以及可选建筑的坐标,计算在这次行动中,大锤的小队有多少种埋伏选择。
注意:
1. 两个特工不能埋伏在同一地点
2. 三个特工是等价的:即同样的位置组合(A, B, C) 只算一种埋伏方法,不能因“特工之间互换位置”而重复使用
输入描述:
第一行包含空格分隔的两个数字 N和D(1 ≤ N ≤ 1000000; 1 ≤ D ≤ 1000000) 第二行包含N个建筑物的的位置,每个位置用一个整数(取值区间为[0, 1000000])表示,从小到大排列(将字节跳动大街看做一条数轴)
输出描述:
一个数字,表示不同埋伏方案的数量。结果可能溢出,请对 99997867 取模
输入例子1:
4 3 1 2 3 4
输出例子1:
4
例子说明1:
可选方案 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)
输入例子2:
5 19 1 10 20 30 50
输出例子2:
1
例子说明2:
可选方案 (1, 10, 20)
#include<iostream>
#include<vector>
using namespace std;
long long C(long long n)
{
return(n - 1) * n / 2;
}
int main()
{
int n, d;//n:建筑的数量;d:特工之间最大距离
cin >> n >> d;
vector<int>arr;
int tmp;
for (int i = 0; i < n;i++){
cin >> tmp;
arr.push_back(tmp);
}
//for (int i = 0; i < arr.size();i++){
// cout << arr[i] << " ";
//}
//判断
long long i = 0, j = 2, count = 0;
while (j < n){
if (j - i < 2)
{
j++;
}
else if (arr[j] - arr[i] > d)
{
i++;
}
else if (arr[j] - arr[i] <= d)
{
count += C(j - i);
j++;
}
}
cout << count % 99997867;
return 0;
}