算法—判断是否为平衡二叉树

题目

输入一棵二叉树,判断该二叉树是否是平衡二叉树。

在这里,我们只需要考虑其平衡性,不需要考虑其是不是排序二叉树。

方法一:

需要遍历完整颗树

  1. 先设置初始flag为true;
  2. 求二叉树的深度;
  3. 在求深度过程中,一旦遇到左子树与右子树深度差大于1的情况,设置flag为false;
  4. 最后返回flag.

代码

/*
方法一:需要遍历完整棵树
*/
public class Solution {
    boolean flag = true; //先设置flag为true
    public boolean IsBalanced_Solution(TreeNode root) {
        if(root == null){
            return true;
        }
        getDepth(root); //getDepth()函数是求树的深度的,里面一旦遇到左右子树深度差大于1的情况,就把flag改为false
        return flag;
    }
    public int getDepth(TreeNode root){
        if(root == null){
            return 0;
        }
        int left = getDepth(root.left);
        int right = getDepth(root.right);
        if(Math.abs(left-right) > 1){  //左右子树高度差大于一
            flag = false;  //将flag设为false
        }
        return Math.max(left, right)+1;
    }
}

方法二

遇到左子树与右子树的高度差大于1的情况即返回,无需遍历完整棵树。

  1. 仍需借助求深度的函数,只是需要改一下这个函数;
  2. getDepth()中,当左子树与右子树高度差大于1时,返回-1,否则返回高度;
/*
方法二:无需遍历完整棵树
*/
import java.lang.Math;

public class Solution {
    public boolean IsBalanced_Solution(TreeNode root) {
        return getDepth(root) != -1;
    }
    public int getDepth(TreeNode root){
        if(root == null){
            return 0;
        }
        int left = getDepth(root.left);
        if(left == -1){
            return -1;
        }
        int right = getDepth(root.right);
        if(right == -1){
            return -1;
        }
        //出现左右子树高度差大于一的情况便立即返回-1,否则返回高度
        return Math.abs(left-right)>1?-1:Math.max(left, right)+1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值