算法—机器人的运动范围

题目

地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?

分析

格子要满足可访问的条件:
1.在矩阵范围内
2.数位之和小于等于阈值
3.方格未被访问过

当一个格子可以被访问,那么从这个格子起:

可访问的格子数 = 左边格子的可访问格子数 + 右边格子的可访问格子数 + 上边格子的可访问格子数 + 下边格子的可访问格子数

代码

public class Solution {

    public int movingCount(int threshold, int rows, int cols)
    {
        int[][] flag = new int[rows][cols]; //记录方格是否被走过,初始值都为0
        return movingCountHelper(0, 0, rows, cols, threshold, flag);
    }
    public int movingCountHelper(int currentRow, int currentCol, int rows, int cols,int threshould, int[][] flag){
        if(currentRow<0 || currentRow>=rows || currentCol<0 || currentCol>=cols){ //不在矩阵范围内
            return 0;
        }
        if(numSum(currentRow) + numSum(currentCol) > threshould){ //数位之和大于阈值
            return 0;
        }
        if(flag[currentRow][currentCol]==1){ //被访问过
            return 0;
        }
        flag[currentRow][currentCol] = 1; //设置方格已被访问过
        return movingCountHelper(currentRow-1, currentCol, rows, cols, threshould, flag)
            + movingCountHelper(currentRow+1, currentCol, rows, cols, threshould, flag)
            + movingCountHelper(currentRow, currentCol-1, rows, cols, threshould, flag)
            + movingCountHelper(currentRow, currentCol+1, rows, cols, threshould, flag)
            + 1;
    }
    public int numSum(int n){
        int num_sum = 0;
        num_sum += n%10;
        n = n/10;
        while(n > 0){
            num_sum += n%10;
            n = n/10;
        }
        return num_sum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值