题目
地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
分析
格子要满足可访问的条件:
1.在矩阵范围内
2.数位之和小于等于阈值
3.方格未被访问过
当一个格子可以被访问,那么从这个格子起:
可访问的格子数 = 左边格子的可访问格子数 + 右边格子的可访问格子数 + 上边格子的可访问格子数 + 下边格子的可访问格子数
代码
public class Solution {
public int movingCount(int threshold, int rows, int cols)
{
int[][] flag = new int[rows][cols]; //记录方格是否被走过,初始值都为0
return movingCountHelper(0, 0, rows, cols, threshold, flag);
}
public int movingCountHelper(int currentRow, int currentCol, int rows, int cols,int threshould, int[][] flag){
if(currentRow<0 || currentRow>=rows || currentCol<0 || currentCol>=cols){ //不在矩阵范围内
return 0;
}
if(numSum(currentRow) + numSum(currentCol) > threshould){ //数位之和大于阈值
return 0;
}
if(flag[currentRow][currentCol]==1){ //被访问过
return 0;
}
flag[currentRow][currentCol] = 1; //设置方格已被访问过
return movingCountHelper(currentRow-1, currentCol, rows, cols, threshould, flag)
+ movingCountHelper(currentRow+1, currentCol, rows, cols, threshould, flag)
+ movingCountHelper(currentRow, currentCol-1, rows, cols, threshould, flag)
+ movingCountHelper(currentRow, currentCol+1, rows, cols, threshould, flag)
+ 1;
}
public int numSum(int n){
int num_sum = 0;
num_sum += n%10;
n = n/10;
while(n > 0){
num_sum += n%10;
n = n/10;
}
return num_sum;
}
}