题目
输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果。如果是则输出Yes,否则输出No。假设输入的数组的任意两个数字都互不相同。
方法1
利用后序遍历序列的性质:
1.最后一个元素是根节点root;
2.除去root后的序列,前面是根节点的左子树left,后面是根节点的右子树right;
3.左子树序列一定都要比root小,右子树序列一定都要比root大.
4.对左子树和右子树的序列同样满足以上三点
代码
public class Solution {
public boolean VerifySquenceOfBST(int [] sequence) {
if(sequence.length == 0){ //空树
return false;
}
if(sequence.length == 1){
return true;
}
return VerifyHelper(sequence, 0, sequence.length-1); //调用辅助函数
}
public boolean VerifyHelper(int [] sequence, int start, int end){
if(start >= end){
return true; //全部节点都验证完了
}
int root = sequence[end]; //找到根节点
int i = start;
while(i<end && sequence[i]<root){
i++; //找到左右子树序列的临界点
}
for(int j=i; j<end; j++){
if(sequence[j] < root){ //若右子树序列里存在小于root的节点,返回false
return false;
}
}
//分别判断左子树,右子树序列
Boolean result1 = VerifyHelper(sequence, start, i-1);
Boolean result2 = VerifyHelper(sequence, i, end-1);
return result1 && result2;
}
}
方法二
转换成算法:给出一个序列作为入栈顺序,判断另一个序列能否为它的出栈顺序。
1.二叉树的中序遍历序列和后序遍历序列,恰好是一个栈的入栈顺序和出栈顺序;
2.二叉搜索树的中序遍历序列是一个有序序列;
3.可将后序序列排序,得到中序序列,判断将中序序列入栈,后序序列能否是它的出栈顺序
代码
import java.util.Arrays;
import java.util.Stack;
public class Solution {
public boolean VerifySquenceOfBST(int [] sequence) {
int inOrder[] = sequence.clone();
Arrays.sort(inOrder); //得到中序序列
return isPopOrder(inOrder, sequence);
}
public boolean isPopOrder(int pushOrder[], int popOrder[]){
if(pushOrder.length==0 || popOrder.length==0){
return false;
}
Stack<Integer> stack = new Stack<>();
int p = 0;
for(int i=0; i<pushOrder.length; i++){
stack.push(pushOrder[i]);//将入栈序列一一入栈
while(!stack.isEmpty() && stack.peek()==popOrder[p]){//遇到和出栈序列相同的元素,就出栈
stack.pop();
p++;
}
}
return stack.isEmpty();
}
}