题目
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
分析
引入两个变量:
sum:记录连续子数组的和,初始值为0
maxSum:记录连续子数组的最大和,初始值为array[0]
- 遍历数组,更新sum值(sum += array[i])
- 然后判断sum与maxSum的大小,若sum > maxSum,则更新maxSum
- 还需判断sum是否小于0,如果当前sum小于0了,则将sum置为0,去计算下一个子数组的和
代码
public class Solution {
public int FindGreatestSumOfSubArray(int[] array) {
int len = array.length;
if(len == 1){
return array[0]; //若数组只有一个数
}
int sum = 0; //记录连续子向量的和
int maxSum = array[0]; //记录连续子向量最大和,初始值为array[0]
for(int i=0; i<len; i++){
sum = sum+array[i];
if(sum > maxSum){
maxSum = sum;
}
if(sum < 0){ //如果sum小于0,则将当前sum置0
sum = 0;
}
}
return maxSum;
}
}