算法—求连续子数组的最大和

题目

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

分析

引入两个变量:
sum:记录连续子数组的和,初始值为0
maxSum:记录连续子数组的最大和,初始值为array[0]

  1. 遍历数组,更新sum值(sum += array[i])
  2. 然后判断sum与maxSum的大小,若sum > maxSum,则更新maxSum
  3. 还需判断sum是否小于0,如果当前sum小于0了,则将sum置为0,去计算下一个子数组的和

代码

public class Solution {
    public int FindGreatestSumOfSubArray(int[] array) {
        int len = array.length;
        if(len == 1){
            return array[0]; //若数组只有一个数
        }
        int sum = 0; //记录连续子向量的和
        int maxSum = array[0]; //记录连续子向量最大和,初始值为array[0]
        for(int i=0; i<len; i++){
            sum = sum+array[i];
            if(sum > maxSum){
                maxSum = sum;
            }
            if(sum < 0){ //如果sum小于0,则将当前sum置0
                sum = 0;
            }
        }
        return maxSum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值