HDOJ 4430 Yukari's Birthday 【枚举】+【二分】

题意:有一个蛋糕,将所有的蜡烛摆成一个以中心为同心轴的同心圆(中心可以放一个或者一个也不放,由近到远编号(1~r)每一个圆上分别放k^i(i是第几个的序号, k》=2)), 给你总的蜡烛数,让你求出k*r最小的,如果k*r相等,取r较小的。

分析:由等比数列可得k^0+k^1+。。。+k^r = (1-k^(r+1))/(1-k) 小于等于10e12,k最小是2,算出来r《40,那么我们可以枚举r,然后二分查找k,但是如果按照正常的二分,TL了(6s都TL。。。),分析发现,算幂的时候可能会溢出(64位也会溢出),当我们算到k^i < n如果溢出的话肯定有k^i>n   =>k^(i-1)*k>n  => n/k^(i-1) < k  这样就可以防止溢出了。

而且,计算得每一个对于每一个r要想k^r<=n  k最大等于pow(n, 1.0/r)(仔细想一下)。

代码(200+):

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
#define LL __int64
#define M 100000
struct node{
	LL r, k, j;
}s[M];
LL tot, n;
bool cmp(node a, node b){
	if(a.j == b.j) return a.r<b.r;
	return a.j<b.j;
}
void solve(){
	LL i, left, right, mid, sum;
	for(i = 1; i < 45; i ++){
		left = 2; right = pow(n, 1.0/i); //这里可以换成n,我的运行时间是800+
		while(left <= right){
			sum = 0;
			LL temp = 1;
			mid = (left+right)>>1;
			for(LL j = 1; j <= i; j ++){
				if(n/temp < mid){ //
					sum = n+1;
					break;
				}
				temp *= mid;
				sum += temp;
			}
			if(sum == n||sum == n-1){
				s[tot].k = mid;
				s[tot].r = i;
				s[tot++].j = mid + i;
				break;
			}
			else if(sum < 0||sum> n) right = mid-1;
			else left = mid+1;
		}
	}
}
int main(){
	while(~scanf("%I64d", &n)){
		tot = 0;
		solve();
		sort(s, s+tot, cmp);
		printf("%I64d %I64d\n", s[0].r, s[0].k);
	}
	return 0;
} 
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4430


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值