求最大最小值,最少要进行多少次比较? | 经典面试题

本文探讨了如何利用分治法来提高寻找数组中最大值和最小值的效率。传统的遍历方法需要n-1次和2n-2次比较,而分治法通过递归将数组分为两半,逐步缩小查找范围,最终时间复杂度为1.5n-2。虽然证明过程复杂,但分治法体现了更优的算法思路,对于大型数据集可能更为高效。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何从n个数里找到最大值?

很容易想到,用一个循环就能搞定。 

int find_max(int arr[n]){

    int max = -infinite;

    for(int i=0; i<n; i++)

        if(arr[i]>max)

            max=arr[i];

    return max;

}

这里,需要执行n-1次比较。

如何从n个数里找到最大值与最小值?

很容易想到,用一个循环找到最大值和最小值,就能搞定。 

(int, int) find_max_min(int arr[n]){

    int max = -infinite;

    int min = infinite;

    for(int i=0; i<n; i++){

        if(arr[i]>max)

            max=arr[i];

        if(arr[i]<min)

            min=arr[i];

    }

    return (max, min);

}

这里,需要执行2*(n-1)=2n-2次比较。

还有没有更快的方法呢?

分治法或许可以派上用场,分治法的思路是:

(1)把大规模拆分成小规模;

(2)小规模分别求解;

(3)小规模求解之后,再综合求解大规模;

看能不能往这个例子里套用:

(1)将arr[0,n]分为arr[0,n/2]和arr[n/2,n];

(2)每个子数组分别求解最大值和最小值;

(3)两个子数组的最大值里再取最大值,两个子数组的最小值里再取最小值,就是最终解;

伪代码大概是这样:

(int, int) find_max_min(int arr[0,n]){

    // 递归左半区

    (max1, min1) = find_max_min(arr[0, n/2]);

    // 递归右半区

    (max2, min2) = find_max_min(arr[n/2, n]);

    // 再计算两次

    max = max1>max2?max1:max2;

    min = min1<min2?min1:min2;

    return (max, min);

}

 画外音,实际的递归代码要注意:

(1)入参不是0和n,而是数组的下限和上限;

(2)递归要收敛,当数组的上下限相差1时,只比较一次,直接返回max和min,而不用再次递归;

分治法之后,时间复杂度是多少呢?

 分治法的时间复杂度分析:

  • 当只有2个元素时,只需要1次计算就能知道最大,最小值

  • 当有n个元素时,

     (1)递归左半区;

     (2)递归右半区;

     (3)再进行两次计算;

f(2)=1;【式子A】

f(n)=2*f(n/2)+2;【式子B】

求解递归式子,得到:

f(n)=1.5n-2;

画外音,证明过程如下:

【式子B】不断展开能得到:

f(n)=2*f(n/2)+2;【式子1】

f(n/2)=2*f(n/4)+2;【式子2】

f(n/4)=2*f(n/8)+2;【式子3】

...

f(n/2^(m-1))=2*f(2^m)+2;【式子m】

通过这m个式子的不断代入,得到:

f(n)=(2^m)*f(n/2^m)+2^(m+1)-2;【式子C】

由于f(2)=1【式子A】;

即【式子C】中n/2^m=2时,f(n/2^m)=f(2)=1;

此时n=2^(m+1),代入【式子C】

即f(n)=n/2 + n -2 = 1.5n-2;

证明过程很严谨,但我知道你没看懂。

总结,n个数:

  • 求最大值,遍历,需要n-1次计算

  • 求最大最小值,遍历,需要2n-2次计算

  • 求最大最小值,分治,时间复杂度1.5n-2

思路比结论重要,希望大家有收获。

架构师之路-分享可落地的技术文章

作业题,n个数:

(1)求最大值,n-1次计算,是最快的方法吗?

(2)求最大最小值,1.5n-2,是最快的方法吗?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值