装箱问题(Packing Problem)

装箱问题也叫背包问题,简单来说,就是把小货物往大箱子里装,要如何才能装得多。个人常见的经历就是“装冰箱”,很有趣的现象就是常常感觉冰箱再也装不下了,但是经过一翻折腾之后又神奇的装下了。

从企业运作角度来看就是尽量让每个容器(仓库、车辆、集装箱、船等)装的尽量多,可以节约企业的费用。通常,装载率85%左右,使用装箱优化方法后,可以达到90~95%左右。海尔做过一个海运装箱的项目,节约了大量运费。日本的汽车企业也非常重视装箱问题,他们海运过来的汽车零件箱内几乎每个角落都会被填满,而且经常改进其装箱方案。

装箱问题是典型的NP难问题,一般使用启发式算法——贪婪算法、蚁群算法、禁忌搜索、遗传算法NF(Next Fit)近似算法,FF(First Fit)近似算法、FFDFirst Fit Decreasing)近似算法、BF(best Fit)BFD(Best Fit Deceasing)等。

装箱问题可以分为一维、二维、三维、多维等。

一维装箱问题是最常见的,只考虑一个因素,比如重量、体积、长度等。问题描述:装箱问题可简述如下:设有编号为12, …, nn种物品,体积分别为v1v2, …,vn。将这n种物品装到容量都为V的若干箱子里。约定这n种物品的体积均不超过V,即对于1≤in,有0vi≤V。不同的装箱方案所需要的箱子数目可能不同。装箱问题要求使装尽这n种物品的箱子数要少。

二维装箱问题考虑两个因素——给定一张矩形的纸(布料、皮革),要求从这张纸上剪出给定的大小不一的形状,求一种剪法使得剪出的废料的面积总和最小。常见问题包括堆场中考虑长和宽进行各功能区域划分、停车场区位划分、包装材料裁切时考虑怎样裁切使得材料浪费最少、服装布料裁切、皮鞋制作中的皮革裁切等。

三维装箱问题考虑三个因素——一般指长、宽、高。装车、装船、装集装箱等要考虑这三个维度都不能超。

多维装箱要考虑多个因素——比如既包括体积因素长、宽、高,又包括重量。

三维装箱问题(3D Bin Packing Problem, 3D-BPP)是一个经典的组合优化问题,涉及在有限的三维空间内有效放置不同尺寸的物品,以最大化容器的利用率或最小化所需的容器数量。具体而言,是将一系列不同形状和大小的物品最优地填充到一个或多个容器中,使容器的空间利用率最大,并满足所有装载约束条件[^1]。 该问题是NP - hard问题,意味着没有已知的算法能在多项式时间内找到绝对最优解。所以通常使用启发式算法(Heuristics)或近似算法来寻找一个足够好的解,目标是尽量少用集装箱[^2]。 以用C++调用CPLEX求解的3D装箱问题为例,这是3D装箱问题的一个变种,不考虑carton的重量约束,仅考虑长宽高,且方向可变,目的是能装进尽可能多的东西。其中,carton是被装入bin中的小纸盒,每个是规则的长方体,长宽高体积确定,放入bin中必须和坐标轴平行;bin是包含carton的大纸盒,模型中假设底面积不变,高度随放入carton数量而变化。该问题有一系列参数设置,如每个carton的长、宽、高,bin的长、宽和高(决策变量),carton的左下后方点的坐标等,还有布尔决策变量和布尔变量来表示相关状态和相对位置,以及一个足够大的常数M。同时,该问题还有相应的模型和约束[^3]。 ### 代码示例 以下为一个简单的Python示例,使用启发式算法(贪心算法)解决简单的三维装箱问题: ```python # 定义物品和箱子的类 class Item: def __init__(self, length, width, height): self.length = length self.width = width self.height = height class Bin: def __init__(self, length, width, height): self.length = length self.width = width self.height = height self.remaining_space = length * width * height # 贪心算法解决三维装箱问题 def greedy_3d_packing(items, bins): packed_items = [] for item in items: item_volume = item.length * item.width * item.height for bin in bins: if bin.remaining_space >= item_volume: bin.remaining_space -= item_volume packed_items.append(item) break return packed_items # 示例数据 items = [Item(2, 2, 2), Item(3, 3, 3), Item(1, 1, 1)] bins = [Bin(5, 5, 5)] # 调用贪心算法 packed = greedy_3d_packing(items, bins) print("已装入的物品数量:", len(packed)) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值