Ubuntu 16.04 PointMVSNet 环境配置

1. CUDA 选择与安装

查看机器显卡型号,找到对应的CUDA版本。

amax@amax:~$ nvidia-smi 
Thu May 21 08:47:23 2020       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.34       Driver Version: 430.34       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce RTX 208...  Off  | 00000000:AF:00.0  On |                  N/A |
| 22%   34C    P8    19W / 250W |    170MiB / 11019MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   1  GeForce RTX 208...  Off  | 00000000:D8:00.0 Off |                  N/A |
| 22%   32C    P8     4W / 250W |      1MiB / 11019MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1584      G   /usr/lib/xorg/Xorg                           113MiB |
|    0      2866      G   compiz                                        49MiB |
|    0      3446      G   /usr/lib/firefox/firefox                       6MiB |
+-----------------------------------------------------------------------------+

此处CUDA Version: 10.1 就是对应的CUDA版本

2. 代码下载及编译环境配置

Anaconda

1. 安装anaconda: https://www.anaconda.com/download/#linux
2. 更换国内源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

# 设置搜索时显示通道地址
conda config --set show_channel_urls yes
  1. pip 换源

修改 ~/.pip/pip.conf (没有就创建一个), 内容如下:

[global]
    index-url = https://pypi.tuna.tsinghua.edu.cn/simple
  1. 创建虚拟环境
conda create -n PointMVSNet python=3.6
source activate PointMVSNet
conda install -c anaconda pillow
pip install -r requirements.txt

Pytorch 1.0.1 安装

1.0.1版本下载地址官网

# CUDA 9.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0 -c pytorch

# CUDA 10.0
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 -c pytorch

# CPU Only
conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly -c pytorch

如果网络较慢去掉后面 -c pytorch 使用国内镜像源

代码下载

git clone https://github.com/callmeray/PointMVSNet.git

编译运行

cd PointMVSNet
conda activate PointMVSNet
bash compile.sh 

训练

Download the preprocessed DTU training data from MVSNet and unzip it to data/dtu
如下图所示

(PointMVSNet) amax@amax:~/PointMVSNet/data/dtu$ ls
Cameras  Depths  Eval

运行训练脚本

python pointmvsnet/train.py --cfg configs/dtu_wde3.yaml

等待训练完成,此时outputs/dtu_wde3/ 会生成.pth 结尾的模型

Testing

(PointMVSNet) amax@amax:~/PointMVSNet/data/dtu/Eval$ ls
dtu_wde3  Rectified

python pointmvsnet/test.py --cfg configs/dtu_wde3.yaml
成功后data/dtu/Eval/dtu_wde3 下会有一些以scan开头的文件夹

Depth Fusion

PointMVSNet generates per-view depth map. We need to apply depth fusion tools/depthfusion.pyto get the complete point cloud. Please refer to MVSNet for more details.

代码下载

git clone https://github.com/YoYo000/fusibile

编译

cmake .

修改CMakeLists.txt 中cuda 算力

-set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS};-O3 --use_fast_math --ptxas-options=-v -std=c++11 --compiler-options -Wall -gencode arch=compute_60,code=sm_60 -gencode arch=compute_60,code=sm_60)
+set(CUDA_NVCC_FLAGS ${CUDA_NVCC_FLAGS};-O3 --use_fast_math --ptxas-options=-v -std=c++11 --compiler-options -Wall -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=sm_75)

显卡GPU 算力查询

https://developer.nvidia.com/cuda-gpus

GTX1050 GPU算力6.1 ,即compute_61,sm_61
在这里插入图片描述

执行编译命令make

make

修改tools/depthfusion.py代码

diff --git a/tools/depthfusion.py b/tools/depthfusion.py
old mode 100644
new mode 100755
index cf30efe..064d66c
--- a/tools/depthfusion.py
+++ b/tools/depthfusion.py
@@ -10,6 +10,8 @@ from __future__ import print_function
 import argparse
 import os.path as osp
 from struct import *
+import sys
+sys.path.insert(0, osp.dirname(__file__) + '/..')
 
 from pointmvsnet.utils.io import *
 
@@ -125,6 +127,8 @@ def mvsnet_to_gipuma(scene_folder, gipuma_point_folder, name, view_num):
     for v in range(view_num):
         # convert cameras
         in_cam_file = os.path.join(scene_folder, 'cam_{:08d}_{}.txt'.format(v, name))
+        if not os.path.exists(in_cam_file):
+            continue
         out_cam_file = os.path.join(gipuma_cam_folder, '{:08d}.jpg.P'.format(v))
         mvsnet_to_gipuma_cam(in_cam_file, out_cam_file)
 
@@ -133,6 +137,7 @@ def mvsnet_to_gipuma(scene_folder, gipuma_point_folder, name, view_num):
         sub_depth_folder = os.path.join(gipuma_point_folder, gipuma_prefix + "{:08d}".format(v))
         mkdir(sub_depth_folder)
         in_depth_pfm = os.path.join(scene_folder, "{:08d}_{}_prob_filtered.pfm".format(v, name))
+
         out_depth_dmb = os.path.join(sub_depth_folder, 'disp.dmb')
         fake_normal_dmb = os.path.join(sub_depth_folder, 'normals.dmb')
         mvsnet_to_gipuma_dmb(in_depth_pfm, out_depth_dmb)
@@ -155,6 +160,9 @@ def probability_filter(scene_folder, init_prob_threshold, flow_prob_threshold, n
         init_prob_map_path = os.path.join(scene_folder, "{:08d}_init_prob.pfm".format(v))
         prob_map_path = os.path.join(scene_folder, "{:08d}_{}_prob.pfm".format(v, name))
         init_depth_map_path = os.path.join(scene_folder, "{:08d}_{}.pfm".format(v, name))
+        #print(init_depth_map_path)
+        if not os.path.exists(init_depth_map_path):
+            continue
         out_depth_map_path = os.path.join(scene_folder, "{:08d}_{}_prob_filtered.pfm".format(v, name))
 
         depth_map = load_pfm(init_depth_map_path)[0]

运行python脚本

python tools/depthfusion.py --eval_folder /home/amax/PointMVSNet/data/dtu/Eval --fusibile_exe_path /home/amax/fusibile/fusibile --depth_folder dtu_wde3 -n flow1 -v 48

根据自己项目修改上面参数

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读