pytorch RNN训练loss出现nan

本文介绍了在深度学习模型训练过程中遇到输入数据包含NaN的问题,以及如何通过检查输入、跟踪网络输出来定位问题。作者通过torch.any(torch.isnan(input))检测输入tensor,并发现由于最大最小值归一化时的除数为0导致了NaN。解决方法包括修正数据预处理步骤,避免除以零的情况,以及在模型训练中添加合适的异常处理。
摘要由CSDN通过智能技术生成

我是通过打断点判断出来的。

(1)利用torch.any(torch.isnan(input))判断自己所有的输入是否有问题(我发现我的输入tensor中有一维的特征有nan,是因为最大最小值归一化的时候,max和min是同一个数,造成除数为0,结果产生了nan,LSTM、GRU学出来的全是nan)

(2)输出网络中每一层的输出,看看nan是哪里产生的(我是在输入和LSTM/GRU单元部分产生的)

(3)找到nan的原因,解决掉nan

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值