C++分解质因数

【问题描述】将一个正整数分解质因数,例如:输入90,输出90=2*3*3*5
【输入形式】一个正整数
【输出形式】所有质因子的乘积
【样例输入】90
【样例输出】90=2*3*3*5

//分解质因子 
#include <iostream> 
using namespace std;
int main()
{
    int num;
    cin >> num;
    cout << num << "=";
    for (int i = 2; i <= num; i++)  //循环查找判断质因数
    {
        while (num % i == 0)    //若i为num的质因数,则输出i
        {
            cout << i;
            num /= i;    //对num除以i后的数求取质因数
            if (num != 1)//判断num是否除尽 
                cout << "*";
        }
    }
    cout << endl;
    return 0;
}

C++分解质因数和求最大公因数是两个不同的概念,但它们都属于数论中的基础问题。下面分别介绍这两个概念及其基本实现方法。 1. 分解质因数分解质因数是指将一个正整数表示成若干个质数的乘积形式。通常,我们会从最小的质数2开始尝试除以原数,如果能整除,则这个数就是其中一个质因数,并且将原数除以这个质因数得到新的数,继续用相同的方法分解,直到新的数为1为止。如果不能整除,则尝试下一个质数,直到找到可以整除的质数或者质数大于等于原数的平方根为止。 2. 求最大公因数(Greatest Common Divisor, GCD): 最大公因数是指两个或多个整数共有约数中最大的一个。求最大公因数的一个常用算法是辗转相除法(也称为欧几里得算法)。算法的基本思想是:用较大的数除以较小的数,再用出现的余数(第一余数)去除较小的数,再用出现的余数(第二余数)去除第一余数,如此继续,直到余数为0为止。当余数为0时,最后一个不为0的余数就是这两个数的最大公因数。 下面是C++实现的示例代码: ```cpp #include <iostream> using namespace std; // 分解质因数函数 void factorize(int number) { for (int i = 2; i * i <= number; ++i) { while (number % i == 0) { cout << i << " "; number /= i; } } if (number > 1) cout << number; // 如果最后剩下的数大于1,则它本身是质数 cout << endl; } // 辗转相除法求最大公因数函数 int gcd(int a, int b) { while (b != 0) { int temp = a % b; a = b; b = temp; } return a; } int main() { int num1, num2; cout << "请输入两个正整数:" << endl; cin >> num1 >> num2; cout << "质因数分解结果:" << endl; factorize(num1); factorize(num2); cout << "最大公因数为:" << gcd(num1, num2) << endl; return 0; } ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值