LeetCode题目51. N皇后
n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
上图为 8 皇后问题的一种解法。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例1
输入: 4
输出: [
[".Q…", // 解法 1
“…Q”,
“Q…”,
“…Q.”],["…Q.", // 解法 2
“Q…”,
“…Q”,
“.Q…”]
]
解释: 4 皇后问题存在两个不同的解法。
解题思路
重在理解n皇后问题的规则:每一行,每一列,每一个对角线只能出现一个皇后。
我们按行添加’Q’, 又对角线分为45度对角线和135度对角线,所以我们用三个布尔数组分别记录在不同列,不同对角线上是否已经有‘Q’存在。
其中,45度对角线
对应的布尔数组长度为2*n+1, 数组下标与棋盘的对应关系是:index=row+col;
135度对角线
对应的布尔数组长度为2*n+1, 数组下标与棋盘的对应关系是:index= n - 1 - (row - col);
完整代码
public class solveNQueens_51_N皇后 {
private List<List<String>> res = new ArrayList<>();
private int n;
private char[][] chs;
boolean[] colExist;//列
boolean[] _45degExist;//45度对角线
boolean[] _135degExist;//135度对角线
public List<List<String>> solveNQueens(int n) {
this.n = n;
chs = new char[n][n];
for (int i = 0; i < n; i++) {
Arrays.fill(chs[i], '.');
}
if (n <= 0)
return res;
this.colExist = new boolean[n];//列
this._45degExist = new boolean[2 * n - 1];//45度对角线
this._135degExist = new boolean[2 * n - 1];//135度对角线
trace(0);//从第一行开始
return res;
}
private void trace(int row) {
if (row == n) {
List<String> list = new ArrayList<>();
for (char[] ch : chs) {
list.add(new String(ch));
}
res.add(list);
return;
}
for (int col = 0; col < n; col++) {
if (colExist[col] || _45degExist[row + col] || _135degExist[n - 1 - (row - col)])
continue;
chs[row][col] = 'Q';
colExist[col] = true;
_45degExist[row + col] = true;
_135degExist[n - 1 - (row - col)] = true;
trace(row + 1);
chs[row][col] = '.';
colExist[col] = false;
_45degExist[row + col] = false;
_135degExist[n - 1 - (row - col)] = false;
}
}
}
更多LeetCode题目及答案解析见GitHub: https://github.com/on-the-roads/LeetCode
剑指offer题目及答案解析:https://github.com/on-the-roads/SwordToOffer