数学:病态矩阵问题

本文探讨了病态矩阵问题,指出当矩阵对数据扰动极度敏感,导致解的剧烈变化时,该矩阵被称为病态矩阵。通过矩阵的条件数可以判断其病态程度,条件数越大,矩阵病态程度越严重,它定义为最大特征值与最小特征值的比例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

病态矩阵问题

示例:

考虑二元方程求解

\left\{ \begin{aligned} x_1+0.5x_2 = 1.5\\ 0.667x_1+0.333x_2 = 1 \end{aligned} \right.          解: \left\{\begin{aligned} x_1=1\\ x_2=1 \end{aligned} \right.

\left\{ \begin{aligned} x_1+0.5x_2 = 1.5\\ 0.667x_1+0.333x_2 = 0.999 \end{aligned} \right.  解: \left\{\begin{aligned} x_1=0\\ x_2=3 \end{aligned} \right.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值