1.前言
一个信号,通常用一个时间的函数
来表示,这样简单直观,因为它的函数图像可以看做信号的波形,比如声波和水波等等。很多时候,对信号的处理是很特殊的,比如说线性电路会将输入的正弦信号处理后,输出仍然是正弦信号,只是幅度和相位有一个变化(实际上从数学上看是因为指数函数是线性微分方程的特征函数,就好像矩阵的特征向量一样,而这个复幅度对应特征值)。因此,如果我们将信号全部分解成正弦信号的线性组合(傅里叶变换
),那么就可以用一个传递函数
来描述这个线性系统。倘若这个信号很特殊,例如
(很明显他的傅里叶级数是不收敛的),傅里叶变换在数学上不存在,这个时候就引入拉普拉斯变换
来解决这个问题。这样一个线性系统都可以用一个传递函数
来表示。所以,从这里可以看到将信号分解为正弦函数(傅里叶变换)或者 复指数函数(拉普拉斯变换)对分析线性系统至关重要。
2.Fourier Laplace Z之间的联系
如果只关心信号本身,不关心系统,这几个变换的关系可以通过这样一个过程联系起来。
首先需要明确一个观点,不管使用时域还是频域(或s域)来表示一个信号,他们表示的都是同一个信号!关于这一点,我们可以从线性

本文深入探讨了傅立叶变换、拉普拉斯变换和Z变换之间的联系及其在信号处理中的应用。通过对线性系统分析,指出这些变换在频域内揭示信号特性的重要性,特别强调了它们在处理有限和无限能量信号的区别,以及离散化在实际计算中的角色。
最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



