傅里叶变换 拉普拉斯变换 Z变换笔记

傅里叶变换 拉普拉斯变换 Z变换笔记

最近学到工程测试技术,感到大一学的微积分真的和没学差不多,于是上找博文学习,最后总算弄懂了一点,记录下来。

首先体验一个小的实验
wyt

x=linspace(0,30,1000)
y1=8/pi*sin(pi/10*x)
y2=8/3/pi*sin(3*pi/10*x)
y3=8/5/pi*sin(5*pi/10*x)
y=y1
y4=-2*(-1).^(mod(ceil(x/10),2))
for n=3:2:100 n 
    y=y+8/n/pi*sin(n*pi/10*x)
end
plot(x,y,x,y4)
hold on
plot([0,30],[0,0],'--')

这里简单的展示了一下傅里叶级数的效果,下面详细的介绍一下三个函数

Part1 函数的正交

{1, s i n ( x ) sin(x) sin(x), c o s ( x ) cos(x) cos(x),·····, s i n ( n x ) sin(nx) sin(nx), c o s ( n x ) cos(nx) cos(nx)}
这里选择两个个推导

∫ − π π c o s n x ∗ c o s n x   d x \int_{-\pi}^\pi{cosnx*cosnx}\,dx ππcosnxcosnxdx

= ∫ − π π 1 + c o s 2 n x 2   d x =\int_{-\pi}^\pi{\frac{1+cos2nx}{2}}\,dx =ππ21+cos2nxdx

= π + 1 2 ∫ − π π c o s 2 n x   d x =\pi+\frac{1}{2}\int_{-\pi}^\pi{cos2nx}\,dx =π+21ππcos2nxdx

= π =\pi =π

∫ − π π c o s n x ∗ s i n m x   d x \int_{-\pi}^\pi{cosnx*sinmx}\,dx ππcosnxsinmxdx

= ∫ − π π s i n ( n + m ) x + s i n ( m − n ) x 2   d x =\int_{-\pi}^\pi{\frac{sin(n+m)x+sin(m-n)x}{2}}\,dx =ππ2sin(n+m)x+sin(mn)xdx

= − 1 2 [ c o s ( n + m ) x m + n + c o s ( m − n ) x m − n ] ∣ − π π =-\frac{1}{2}[\frac{cos(n+m)x}{m+n}+\frac{cos(m-n)x}{m-n}]|_{-\pi}^\pi =21[m+ncos(n+m)x+mncos(mn)x]ππ

= 0 =0 =0

Part2 傅里叶级数推导

通过以上的推导可以知道给出的上述函数坐标系是正交的,因此傅里叶级数可以表示为
f ( x ) = ∑ n = 0 ∞ a n c o s n x + ∑ n = 0 ∞ b n s i n n x = a 0 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x)=\sum_{n=0}^{\infty}a_ncosnx+\sum_{n=0}^{\infty}b_nsinnx=a_0+\sum_{n=1}^{\infty}(a_ncosnx+b_nsinnx) f(x)=n=0ancosnx+n=0bnsinnx=a0+n=1(ancosnx+bnsinnx)

这与通常书本上的会有一些区别
f ( x ) = a 0 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x)=a_0+\sum_{n=1}^{\infty}(a_ncosnx+b_nsinnx) f(x)=a0+n=1(ancosnx+bnsinnx)
这里书本上除以2主要是为了结构上的一致,通过后面的分析就可以知道,这里先不用管

通过推导可知
a 0 = 1 2 π ∫ − π π f ( x )   d x a_0=\frac{1}{2\pi}\int_{-\pi}^{\pi}f(x)\,dx a0=2π1ππf(x)dx
a n = 1 π ∫ − π π f ( x ) c o s ( n x )   d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cos(nx)\,dx an=π1ππf(x)cos(nx)dx
b n = 1 π ∫ − π π f ( x ) s i n ( n x )   d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)sin(nx)\,dx bn=π1ππf(x)sin(nx)dx
这里便可以看出课本上将 a 0 a_0 a0除以的原因了
最终得到傅里叶级数
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_ncosnx+b_nsinnx) f(x)=2a0+n=1(ancosnx+bnsinnx)

Part3周期为2L的傅里叶级数的展开

f ( t ) = f ( t + 2 L ) f(t)=f(t+2L) f(t)=f(t+2L)
换元
x = π L t ⇒   t = L π x x=\frac{\pi}{L}t\Rightarrow\,t=\frac{L}{\pi}x x=Lπtt=πLx
则有
f ( t ) = f ( L π x ) ⇒   g ( x ) f(t)=f(\frac{L}{\pi}x)\Rightarrow\,g(x) f(t)=f(πLx)g(x)
这里 g ( x ) g(x) g(x)的周期为 2 π 2\pi 2π
通过Part2的推导可知
g ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) g(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_ncosnx+b_nsinnx) g(x)=2a0+n=1(ancosnx+bnsinnx)

a 0 = 1 π ∫ − π π f ( x )   d x a_0=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\,dx a0=π1ππf(x)dx

a n = 1 π ∫ − π π f ( x ) c o s ( n x )   d x a_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)cos(nx)\,dx an=π1ππf(x)cos(nx)dx

b n = 1 π ∫ − π π f ( x ) s i n ( n x )   d x b_n=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)sin(nx)\,dx bn=π1ππf(x)sin(nx)dx

逆向带回f(t)得到
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n π L t + b n s i n n π L t ) f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_ncos\frac{n\pi}{L}t+b_nsin\frac{n\pi}{L}t) f(t)=2a0+n=1(ancosLnπt+bnsinLnπt)

a 0 = 1 L ∫ − L L f ( t )   d t a_0=\frac{1}{L}\int_{-L}^{L}f(t)\,dt a0=L1LLf(t)dt

a n = 1 L ∫ − L L f ( t ) c o s ( n π L t )   d t a_n=\frac{1}{L}\int_{-L}^{L}f(t)cos(\frac{n\pi}{L}t)\,dt an=L1LLf(t)cos(Lnπt)dt

b n = 1 L ∫ − L L f ( t ) s i n ( n π L t )   d t b_n=\frac{1}{L}\int_{-L}^{L}f(t)sin(\frac{n\pi}{L}t)\,dt bn=L1LLf(t)sin(Lnπt)dt

这里进一步简化,设函数的周期为T
则有
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n ω t + b n s i n n ω t ) f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_ncosn\omega t+b_nsinn\omega t) f(t)=2a0+n=1(ancosnωt+bnsinnωt)

a 0 = 2 T ∫ 0 T f ( t )   d t a_0=\frac{2}{T}\int_{0}^{T}f(t)\,dt a0=T20Tf(t)dt

a n = 2 T ∫ 0 T f ( t ) c o s n ω t   d t a_n=\frac{2}{T}\int_{0}^{T}f(t)cosn\omega t\,dt an=T20Tf(t)cosnωtdt

b n = 2 T ∫ 0 T f ( t ) s i n n ω t   d t b_n=\frac{2}{T}\int_{0}^{T}f(t)sinn\omega t\,dt bn=T20Tf(t)sinnωtdt

Part4 傅里叶级数&&欧拉公式

傅里叶级数
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s n ω t + b n s i n n ω t ) f(t)=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_ncosn\omega t+b_nsinn\omega t) f(t)=2a0+n=1(ancosnωt+bnsinnωt)

a 0 = 2 T ∫ 0 T f ( t )   d t a_0=\frac{2}{T}\int_{0}^{T}f(t)\,dt a0=T20Tf(t)dt

a n = 2 T ∫ 0 T f ( t ) c o s n ω t   d t a_n=\frac{2}{T}\int_{0}^{T}f(t)cosn\omega t\,dt an=T20Tf(t)cosnωtdt

b n = 2 T ∫ 0 T f ( t ) s i n n ω t   d t b_n=\frac{2}{T}\int_{0}^{T}f(t)sinn\omega t\,dt bn=T20Tf(t)sinnωtdt

欧拉公式
e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ

c o s θ = 1 2 ( e i θ + e − i θ ) cos\theta=\frac{1}{2}(e^{i\theta}+e^{-i\theta}) cosθ=21(eiθ+eiθ)

s i n θ = − i 2 ( e i θ − e − i θ ) sin\theta=\frac{-i}{2}(e^{i\theta}-e^{-i\theta}) sinθ=2i(eiθeiθ)

代入可得
f ( t ) = ∑ − ∞ ∞ c n e i n w t f(t)=\sum_{-\infty}^{\infty}c_ne^{inwt} f(t)=cneinwt

c ( n ) = { a 0 2 , n = 0 a n − i b n 2 , n = 1 , 2 , 3 , ⋅ ⋅ ⋅ ⋅ a − n + i b − n 2 , n = − 1 , − 2 , − 3 , ⋅ ⋅ ⋅ ⋅ c(n)=\begin {cases} \frac{a_0}{2}, & n=0 \\ \frac{a_n-ib_n}{2}, & n=1,2,3,···· \\ \frac{a_{-n}+ib_{-n}}{2},&n=-1,-2,-3,···· \end {cases} c(n)=2a0,2anibn,2an+ibn,n=0n=1,2,3n=1,2,3
c 0 = a 0 2 = 1 T ∫ 0 T f ( t ) d t c_0=\frac{a_0}{2}=\frac{1}{T}\int_{0}^{T}f(t)dt c0=2a0=T10Tf(t)dt

c n = 1 T ∫ 0 T f ( t ) e − n w t i d t c_n=\frac{1}{T}\int_{0}^{T}f(t)e^{-nwti}dt cn=T10Tf(t)enwtidt

c n = 1 T ∫ 0 T f ( t ) e − n w t i d t c_n=\frac{1}{T}\int_{0}^{T}f(t)e^{-nwti}dt cn=T10Tf(t)enwtidt
因此 f ( t ) = f ( t + T ) f(t)=f(t+T) f(t)=f(t+T)通过欧拉公式变换的傅里叶级数(傅里叶变换FT)为
f ( t ) = ∑ − ∞ ∞ c n e − n w t f(t)=\sum\limits_{-\infty}^{\infty}c_ne^{-nwt} f(t)=cnenwt

c n = 1 T ∫ 0 T f ( t ) e − n w t i d t c_n=\frac{1}{T}\int_{0}^{T}f(t)e^{-nwti}dt cn=T10Tf(t)enwtidt

Part5 傅里叶变换(FT)

这里贴一张图
wyt

我们经常可以听到傅里叶变换时将时域信号变换到频域信号
这里引用上一小节的内容

f T ( t ) = ∑ − ∞ ∞ c n e − n w 0 t f_T(t)=\sum\limits_{-\infty}^{\infty}c_ne^{-nw_0t} fT(t)=cnenw0t

c n = 1 T ∫ − T 2 T 2 f T ( t ) e − n w 0 t i d t ( w 0 = 2 π T ) c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t)e^{-nw_0ti}dt \qquad(w_0=\frac{2\pi}{T}) cn=T12T2TfT(t)enw0tidt(w0=T2π)

对于非周期函数( T → ∞ T\rightarrow \infty T)
lim ⁡ T → ∞ f T ( t ) → f ( t ) \lim\limits_{T\rightarrow \infty}f_T(t)\rightarrow f(t) TlimfT(t)f(t)
此处频域之间的间隔 Δ ω \Delta\omega Δω随T的增大而不断变小,最终 T → ∞ T\rightarrow \infty T Δ w → 0 \Delta w\rightarrow 0 Δw0,这就是是与不连续到频域连续的变换
于是
f T ( t ) = ∑ n = − ∞ ∞ 1 T ∫ − T 2 T 2 f T ( t ) e − i n w 0 t d t e i n w 0 t f_T(t)=\sum\limits_{n=-\infty}^{\infty}\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t)e^{-inw_0t}dte^{inw_0t} fT(t)=n=T12T2TfT(t)einw0tdteinw0t

f T ( t ) = ∑ n = − ∞ ∞ Δ w 2 π ∫ − T 2 T 2 f T ( t ) e − i n w 0 t d t e i n w 0 t ∗ f_T(t)=\sum\limits_{n=-\infty}^{\infty}\frac{\Delta w}{2\pi}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t)e^{-inw_0t}dte^{inw_0t}\qquad * fT(t)=n=2πΔw2T2TfT(t)einw0tdteinw0t

T → ∞ T\rightarrow \infty T
∫ − t 2 t 2 d t = ∫ − ∞ + ∞ d t \int_{-\frac{t}{2}}^{\frac{t}{2}}dt=\int_{-\infty}^{+\infty}dt 2t2tdt=+dt

∑ n = − ∞ ∞ Δ w → ∫ − ∞ + ∞ d ω \sum\limits_{n=-\infty}^{\infty}\Delta w \rightarrow \int_{-\infty}^{+\infty}d\omega n=Δw+dω
将上式代入 ∗ * 式得
f ( t ) = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( t ) e − i w t d t   e i w t d w f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(t)e^{-iwt}dt\,e^{iwt}dw f(t)=2π1++f(t)eiwtdteiwtdw
这里截取中间的积分
F ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i w t d t ( 傅 里 叶 变 换 F T ) F(\omega)=\int_{-\infty}^{+\infty}f(t)e^{-iwt}dt\qquad (傅里叶变换FT) F(ω)=+f(t)eiwtdt(FT)
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i w t d w ( 傅 里 叶 变 换 的 逆 变 化 ) f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(\omega)e^{iwt}dw\qquad (傅里叶变换的逆变化) f(t)=2π1+F(ω)eiwtdw()

Part6离散傅里变换(DFT)

这里应用前面推导的傅里叶级数

f T ( t ) = ∑ − ∞ ∞ c n e − n w 0 t f_T(t)=\sum\limits_{-\infty}^{\infty}c_ne^{-nw_0t} fT(t)=cnenw0t

c n = 1 T ∫ − T 2 T 2 f T ( t ) e − n w 0 t i d t = 1 T ∫ 0 T f T ( t ) e − n w 0 t i d t ( w 0 = 2 π T ) c_n=\frac{1}{T}\int_{-\frac{T}{2}}^{\frac{T}{2}}f_T(t)e^{-nw_0ti}dt =\frac{1}{T}\int_{0}^{T}f_T(t)e^{-nw_0ti}dt \qquad(w_0=\frac{2\pi}{T}) cn=T12T2TfT(t)enw0tidt=T10TfT(t)enw0tidt(w0=T2π)

c n = 1 N ∑ n = 0 N − 1 f ( T N n ) e − i 2 π k n N c_n=\frac{1}{N}\sum\limits_{n=0}^{N-1}f(\frac{T}{N}n)e^{-{i\frac{2\pi kn}{N}}} cn=N1n=0N1f(NTn)eiN2πkn
这里w离散,故将其换成了k
这里进一步简化为
c n = 1 N ∑ n = 0 N − 1 Y n W − n k c_n=\frac{1}{N}\sum\limits_{n=0}^{N-1}Y_nW^{-nk} cn=N1n=0N1YnWnk
W = e 2 π N i W=e^{\frac{2\pi}{N}i} W=eN2πi
Y n = f ( n 2 π N ) Y_n=f(n\frac{2\pi}{N}) Yn=f(nN2π)

离散傅里叶逆变换
根据 f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( w ) e i w t d w f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}F(w)e^{iwt}dw f(t)=2π1+F(w)eiwtdw类似推导的
f ( t ) = 1 N ∑ n = 0 N − 1 Y ( n ) e i 2 π k n N f(t)=\frac{1}{N}\sum\limits_{n=0}^{N-1}Y(n)e^{i\frac{2\pi kn}{N}} f(t)=N1n=0N1Y(n)eiN2πkn

快速傅里叶变换

是离散傅里叶变换的简化
如果原来计算DFT的复杂度是NN次运算(N代表输入采样点的数量),进行FFT的运算复杂度是Nlg10(N)

拉普拉斯变换(Laplace Transform)

傅里叶变换有其固有局限性:必须满足迪利克雷条件

  • 在一周期内,连续或只有有限个第一类间断点;
  • 在一周期内,极大值和极小值的数目应是有限个;
  • 在一周期内,信号是绝对可积的

这里第三点极大的限制了傅里叶变换的应用范围
因此laplace变换引入了一个补偿因子,使信号衰减 e − σ t e^{-\sigma t} eσt,将原本不满足迪利克雷条件的函数变换为满足
∫ − ∞ + ∞ f ( t ) e − σ t e − i w t   d t \int_{-\infty}^{+\infty}f(t)e^{-\sigma t}e^{-iwt}\,dt +f(t)eσteiwtdt
此处令 s = σ + w i s=\sigma +wi s=σ+wi
则变形为 ∫ − ∞ + ∞ f ( t ) e − s t d t \int_{-\infty}^{+\infty}f(t)e^{-st}dt +f(t)estdt

Z变换

Z变换是基于拉普拉斯变换提出的,不同于拉普拉斯变换的是,Z变换用于分析离散系统,而拉普拉斯变换用于分析连续系统

这里引入单位冲击函数

f ( t ) σ T ( t ) = ∑ n = 0 ∞ f ( n T ) σ ( t − n T ) f(t)\sigma_T(t)=\sum_{n=0}^{\infty}f(nT)\sigma(t-nT) f(t)σT(t)=n=0f(nT)σ(tnT)

s = i w + σ s=iw+\sigma s=iw+σ

F s ( s ) = ∫ 0 ∞ [ ∑ n = 0 ∞ f ( n T ) σ ( t − n T ) ] e − s t   d t F_s(s)=\int_{0}^{\infty}[\sum_{n=0}^{\infty}f(nT)\sigma(t-nT)]e^{-st}\,dt Fs(s)=0[n=0f(nT)σ(tnT)]estdt

= ∑ n = 0 ∞ f ( n t ) e − s n T =\sum_{n=0}^{\infty}f(nt)e^{-snT} =n=0f(nt)esnT

z = e s t z=e^{st} z=est
则上式子变为
= ∑ n = 0 ∞ f ( n t ) z − n =\sum_{n=0}^{\infty}f(nt)z^{-n} =n=0f(nt)zn

z = e s t = e ( σ + j w ) T = e σ T e j w t = A ( c o s n w t + i s i n ( w t ) ) = A ( a + i b ) z=e^{st}=e^{(\sigma+jw)T}=e^{\sigma T}e^{jwt}=A(cosnwt+isin(wt))=A(a+ib) z=est=e(σ+jw)T=eσTejwt=A(cosnwt+isin(wt))=A(a+ib)

e ( σ + j w ) n T = e σ n T e j w n t = A ( c o s w n t + i s i n w n t ) e^{(\sigma+jw)nT}=e^{\sigma nT}e^{jwnt}=A(coswnt+isinwnt) e(σ+jw)nT=eσnTejwnt=A(coswnt+isinwnt)

z → z n z\rightarrow z^n zzn时相当于打碎了原来的螺旋前进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值