独立成分分析ICA系列5:信息极大化的 ICA 算法

本文详细介绍了独立成分分析(ICA)的基本理论和信息极大化(Infomax)算法,探讨了Infomax算法在语音增强与消噪、助听器功能改善等领域的应用,同时指出了算法的局限性,强调了采集设备与声源距离的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.ICA基本理论再综述

在实际应用中,可以通过传感器得到一系列观测信号,这些观测信号是由未知源信号经过某种混合系统的输出,如在移动通信中,源信号经过发射机天线发出后,在无线信道中经过不确定的混合和干扰,以至于到达接收机的信号是一个多径、携噪的混合信号,而从混合信号中分离出发射端的源信号将大大改善通信质量,因此类似的问题都可以用 ICA的方法来解决。

假设由 N 个源信号 构成一个列向量由 M 个观测信号构成一个列向量A 是一个 N*M 维混合矩阵,满足下列方程:

 注意看!观测信号一定要大于等于源信号,否则这个问题是无解的!!!

ICA 的思路是找到一个 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值