Unet项目解析(7): 模型编译-优化函数、损失函数、指标列表

本文详细介绍了Unet模型编译过程,包括选择优化器如SGD、RMSprop等,理解损失函数如mse、mae、categorical_crossentropy等,并探讨了预定义和自定义的性能评估函数在模型训练中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

项目GitHub主页:https://github.com/orobix/retina-unet

参考论文:Retina blood vessel segmentation with a convolution neural network (U-net)


1. 模型编译

model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])

在训练模型之前,需要通过compile来对学习过程进行配置。compile接收三个参数:

  • 优化器optimizer:指定为已预定义的优化器名,如rmsprop、adagrad,或一个Optimizer类的对象
  • 损失函数loss:最小化的目标函数,为预定义的损失函数名,如categorical_crossentropy、mse,也可以为一个损失函数
  • 指标列表metrics:对分类问题,一般设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数.指标函数应该返回单个张量,或一个完成metric_name - > metric_value映射的字典.
如果只是载入模型并利用其predict,可以不用进行compile。在Keras中,compile主要完成损失函数和优化器的一些配置,是为训练服务的。predict会在内部进行符号函数的编译工作(通过调用_make_predict_function生成函数), <
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值