项目GitHub主页:https://github.com/orobix/retina-unet
参考论文:Retina blood vessel segmentation with a convolution neural network (U-net)
1. 模型编译
model.compile(optimizer='rmsprop',loss='categorical_crossentropy',metrics=['accuracy'])
在训练模型之前,需要通过compile来对学习过程进行配置。compile接收三个参数:
- 优化器optimizer:指定为已预定义的优化器名,如rmsprop、adagrad,或一个Optimizer类的对象
- 损失函数loss:最小化的目标函数,为预定义的损失函数名,如categorical_crossentropy、mse,也可以为一个损失函数
- 指标列表metrics:对分类问题,一般设置为metrics=['accuracy']。指标可以是一个预定义指标的名字,也可以是一个用户定制的函数.指标函数应该返回单个张量,或一个完成metric_name - > metric_value映射的字典.