LightM-UNet:一个基于Mamba的轻量级U形分割模型

UNet作为一种基于卷积神经网络(CNN-based)的模型,面临卷积操作固有局部性,限制了它理解明确的全局和长距离语义信息交互的能力。一些研究尝试通过扩张卷积层,自我注意力机制和图像金字塔来缓解这个问题但在建模长距离依赖方面仍表现出限制。且近期研究探讨了整合Transformer架构,利用自注意力机制将图像视为一系列连续的Patch来捕获全局信息,但由于子注意力机制导致了图像尺寸的二次复杂度,特别对于需要密集预测的任务(如医疗图像分割),带来了相当大计算开销。所以仍然存在一个问题:“如何在不增加额外参数和计算负担的情况下,赋予UNet容纳长距离依赖的能力?”

近期,由于状态空间模型(SSMs)不仅能建立长距离依赖关系,而且还有输入规模的线性复杂性。于是一些尝试如U-Mamba【14】,提出了一个混合的CNN-SSM块,结合了卷积层的局部特征提取能力与SSM在捕捉纵向依赖关系方面的专长但其引入了大量参数和计算负载,带来了相当大计算开销。在这项研究,引入了LightM-UNet,一个基于MAmba的轻量级U形分割模型,显著降低参数和计算成本的同时实现了最先进的性能。(如下图)

LightM-UNet是UNet与Mamba的轻量级融合,超越了现有的最先进模型。在技术方面,提出了残差视觉曼巴层(RVM层)”以纯曼巴方式从图像中提取深层特征。在引入的新参数和计算开销最小的情况下,作者通过使用“残差连接”和“调整因子”进一步增强了SSM对视觉图像中长距离空间依赖关系建模的能力。

方法论

LightM-UNet的总体架构如图2所示。

给定一个输入图像 ,其中C 、H、W和D分别表示3D医疗图像的通道数、高度、宽度和切片数。LightM-UNet首先使用深度可分卷积(DWConv)层进行浅层特征提取,生成浅层特征图其中32表示固定的滤波器数量。随后,LightM-UNet结合三个连续的编码器块(Encoder Blocks)从图像中提取深层特征。在每个编码器块之后,特征图中的通道数翻倍,而分辨率减半。在-th编码器块处,LightM-UNet提取深层特征

### UNet 改进模型轻量化的方法和技术 #### 一、重参数化技术的应用 为了提升轻量化网络的能力,在某些研究中采用了重参数结构来增强模型性能。这种结构不仅能够简化网络设计,还能有效提高模型的表现力[^1]。 ```python class ReparameterizedBlock(nn.Module): def __init__(self, in_channels, out_channels): super(ReparameterizedBlock, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) def forward(self, x): return F.relu(self.conv(x)) ``` #### 二、高效的空间金字塔池化模块 ESPNet-C 和 Dual Attention Network 的组合被证明可以显著加强特征提取的效果。前者专注于捕捉多尺度上下文信息;后者则通过空间注意力机制进一步提升了局部细节的感受野范围。这样的改进使得整个架构更加紧凑且具备更高的表达能力[^2]。 #### 三、Mamba作为轻量级组件嵌入到UNet框架下 LightM-UNet 提出了一个新的视角——即采用 Mamba 结构替换传统 CNN 或 Transformer 层次中的部分单元,从而构建出更适合于资源受限环境下的医学影像处理方案。此方法既保留了原始 U 连接的优势特性,又大幅减少了所需的计算开销[^3]。 ```python import torch.nn as nn class LightMUnetEncoderBlock(nn.Module): def __init__(self, input_dim, output_dim): super(LightMUnetEncoderBlock, self).__init__() self.mamba_layer = ... # Define the lightweight mamba layer here def forward(self, x): ... class LightMUnetDecoderBlock(nn.Module): def __init__(self, input_dim, output_dim): super(LightMUnetDecoderBlock, self).__init__() self.simple_decoder_module = ... # Implement a simple decoder module to reduce computation cost def forward(self, x): ... # Example usage of these blocks within an overall network architecture. light_m_unet_architecture = [ (input_channels_0, hidden_channels_1), (hidden_channels_1, hidden_channels_2), ... ] for i, (in_chs, out_chs) in enumerate(light_m_unet_architecture[:-1]): encoder_block = LightMUnetEncoderBlock(in_chs, out_chs) decoder_block = LightMUnetDecoderBlock(out_chs, light_m_unet_architecture[i][0]) # Add more layers or connections between encoders and decoders... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值