在GAT论文中遇到的问题与理解

Q&A

Q1 多头注意力机制

使用多套 W W W a ⃗ T \vec{a}^T a T计算 α i j \alpha_{ij} αij

Q2 滤波器

https://blog.csdn.net/weixin_38481963/article/details/109906338

卷积核就是由长和宽来指定的,是一个二维的概念。
而过滤器是是由长、宽和深度指定的,是一个三维的概念。
过滤器可以看做是卷积核的集合。
过滤器比卷积核高一个维度——深度。

Q3 反向传播

以权重参数 w 1 , 1 w_{1,1} w1,1

[ w 1 , 1 w 1 , 2 ⋯ w 1 , 8 w 2 , 1 w 2 , 2 ⋯ w 2 , 8 ⋮ ⋮ ⋱ ⋮ w 1433 , 1 w 1433 , 2 ⋯ w 1433 , 8 ] \begin{bmatrix} {w_{1,1}}&{w_{1,2}}&{\cdots}&{w_{1,8}}\\ {w_{2,1}}&{w_{2,2}}&{\cdots}&{w_{2,8}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {w_{1433,1}}&{w_{1433,2}}&{\cdots}&{w_{1433,8}}\\ \end{bmatrix} w1,1w2,1w1433,1w1,2w2,2w1433,2w1,8w2,8w1433,8

h ( 输 入 的 结 点 特 征 ) = [ h 1 ′ [ 1433 ] , h 2 ′ [ 1433 ] , h 3 ′ [ 1433 ] , . . . , h 2708 ′ [ 1433 ] ] T h(输入的结点特征) = [h'_1[1433],h'_2[1433],h'_3[1433],...,h'_{2708}[1433]]^T h()=[h1[1433],h2[1433],h3[1433],...,h2708[1433]]T

W h = [ h 1 ′ [ 8 ] , h 2 ′ [ 8 ] , . . . , h 2708 ′ [ 8 ] ] T Wh =[h'_1[8] ,h'_2[8], ... ,h'_{2708}[8]]^T Wh=[h1[8],h2[8],...,h2708[8]]T

h 1 ′ [ 0 ] = W 1 , 1 h 1 ′ [ 0 ] + W 2 , 1 h 1 ′ [ 1 ] + ⋯ + W 1433 , 1 h 1 ′ [ 1432 ] + b i a s h'_1[0] = {W_{1,1}h'_1[0]}+{W_{2,1}h'_1[1]}+{\cdots}+{W_{1433,1}h'_1[1432]} +bias h1[0]=W1,1h1[0]+W2,1h1[1]++W1433,1h1[1432]+bias

∂ L o s s ∂ w 1 , 1 = ∂ L o s s ∂ h ′ ∗ ∂ h ′ ∂ h ∗ ∂ h ∂ w 1 , 1 \frac{\partial Loss}{\partial w_{1,1}} = \frac{\partial Loss}{\partial h'} *\frac{\partial h'}{\partial h} *\frac{\partial h}{\partial w_{1,1}} w1,1Loss=hLosshhw1,1h

g r a d f ( w 0 , w 1 , . . w n ) = ( ∂ f ∂ w 0 , ∂ f ∂ w 1 , ∂ f ∂ w n ) gradf(w_0,w_1,..w_n) = (\frac{\partial f}{\partial w_0}, \frac{\partial f}{\partial w_1},\frac{\partial f}{\partial w_n}) gradf(w0,w1,..wn)=(w0f,w1f,wnf)

w 1 , 1 = w 1 , 1 − η ∂ L o s s ∂ w 1 , 1 w_{1,1} = w_{1,1} - \eta\frac{\partial Loss}{\partial w_{1,1}} w1,1=w1,1ηw1,1Loss

Q4 优化器

在这里插入图片描述

img

该算法更新梯度的 指数移动均值 m t m_t mt和 平方梯度 v t v_t vt
指数移动均值 m t m_t mt
参数 β1、β2 ∈ [0, 1) 控制了这些移动均值 m t m_t mt指数衰减率。
移动均值本身使用梯度的一阶矩(均值)和二阶原始矩(有偏方差)进行估计。

因为这些移动均值初始化为 0 向量,所以矩估计值会偏差向 0,特别是在初始时间步中和衰减率非常小(即β接近于 1)的情况下是这样的。
但好消息是,初始化偏差很容易抵消,因此我们可以得到偏差修正(bias-corrected)的估计 m t ^ \hat{m_t} mt^ m t ^ \widehat{m_t} mt

w 1 , 1 = w 1 , 1 − η m ^ e p o c h v ^ e p o c h + ϵ m ^ e p o c h = m e p o c h 1 − β 1 v ^ e p o c h = v e p o c h 1 − β 2 w_{1,1} = w_{1,1} - \eta \frac{\widehat{m}_{epoch}}{\sqrt{\widehat{v}_{epoch}} + \epsilon }\\ \widehat{m}_{epoch} = \frac{m_{epoch}}{1-\beta_1}\\ \widehat{v}_{epoch} = \frac{v_{epoch}}{1-\beta_2}\\ w1,1=w1,1ηv epoch +ϵm epochm epoch=1β1mepochv epoch=1β2vepoch
m e p o c h = m e p o c h − 1 β 1 + ( 1 − β 1 ) ∂ L o s s ∂ w 1 , 1 m_{epoch} = m_{epoch-1}\beta_1 + (1-\beta_1) \frac{\partial Loss}{\partial w_{1,1}}\\ mepoch=mepoch1β1+(1β1)w1,1Loss
v e p o c h = v e p o c h − 1 β 2 + ( 1 − β 2 ) ∂ L o s s ∂ w 1 , 1 2 v_{epoch} = v_{epoch-1}\beta_2 + (1-\beta_2) \frac{\partial Loss}{\partial w_{1,1}}^2\\ vepoch=vepoch1β2+(1β2)w1,1Loss2
矩 估 计 的 指 数 衰 减 数 率 : β 1 = 0.9 , β 2 = 0.999 e p o c h = 1 步 长 : ϵ = 1 e − 8 学 习 率 : η = 0.005 矩估计的指数衰减数率: \beta_1 = 0.9,\beta_2 = 0.999\\ epoch =1\\ 步长: \epsilon = 1e-8\\ 学习率: \eta = 0.005 :β1=0.9,β2=0.999epoch=1:ϵ=1e8:η=0.005

m 0 = v 0 = 0 m_{0} = v_{0}=0 m0=v0=0

Q5 第一层GAT

h ( 输 入 的 结 点 特 征 ) = [ h ⃗ 1 [ 1433 ] , h ⃗ 2 [ 1433 ] , h ⃗ 3 [ 1433 ] , . . . , h ⃗ 2708 [ 1433 ] ] T h(输入的结点特征) = [\vec{h}_1[1433],\vec{h}_2[1433],\vec{h}_3[1433],...,\vec{h}_{2708}[1433]]^T h()=[h 1[1433],h 2[1433],h 3[1433],...,h 2708[1433]]T

h ‘ ( 输 出 的 结 点 特 征 ) = [ h ’ ⃗ 1 [ 8 ] , h ‘ ⃗ 2 [ 8 ] , h ’ ⃗ 3 [ 8 ] , . . . , h ‘ ⃗ 2708 [ 8 ] ] T h‘(输出的结点特征) = [\vec{h’}_1[8],\vec{h‘}_2[8],\vec{h’}_3[8],...,\vec{h‘}_{2708}[8]]^T h()=[h 1[8],h 2[8],h 3[8],...,h 2708[8]]T

h ‘ ( 输 出 的 结 点 特 征 ) = [ h ’ ⃗ 1 [ 7 ] , h ‘ ⃗ 2 [ 7 ] , h ’ ⃗ 3 [ 7 ] , . . . , h ‘ ⃗ 2708 [ 7 ] ] T h‘(输出的结点特征) = [\vec{h’}_1[7],\vec{h‘}_2[7],\vec{h’}_3[7],...,\vec{h‘}_{2708}[7]]^T h()=[h 1[7],h 2[7],h 3[7],...,h 2708[7]]T

参考资料

https://pytorch.apachecn.org

PyTorch

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值