Finding Action Tubes - cvpr - 2015

转自:http://www.cnblogs.com/xuanyoumeng/p/4993408.html

Finding Action Tubes - cvpr - 2015

论文题目Finding Action Tubes,  论文链接
该篇论文是CVPR 2015的, 主要讲述了action tube的localization.

直接看图说话,  该论文的核心思想/步骤可以分为两个components:
  1 Action detection at every frame of the video
  2 Linked detection in time produce action tubes
下面就分开来说每个component.
Action detection at every frame of the video
  大概思想就是: 训练Spatial-CNN和Motion-CNN来提feature, 在feature上为每个类别训练线性svm.         
  具体步骤如下:
     a.  找出each frame的interesting regions. 基于ground-truth的region及action label, 构建正负样本.
             这里用IoU的方法: >0.5 为positive region, <0.3为negative region.
            为什么要这样做呢? 个人觉得论文里面的action tube是针对里面的actor来弄的, 
             也就是对视频里面的某个actor进行action的跟踪和action 分类. 
              必然数据集会给出视频的每一帧的action类别和对应的actor.
        那么怎么找出这些regions? 以及怎么消除不必要的regions?
            对于proposals的产生会有很多方法, 论文里面采用了selective search的方法来产生视频里每帧的proposals(大约2K)
            显然这些proposals很大一部分是non- discriminative的, 而且会造成计算上严重的消耗, 不利于实时检测.
            论文里面用了一种很简单的方法来消去这些 not descriptive的regions:
              
            需要注意的是, rgb和motion images的regions是一样的, 
             也就是prososals是用上述方法在rgb上提取到, 然后直接用到motion上的.
     b. 训练 Spatial-CNN和Motion-CNN
         这里就展开说这两个CNN模型的framework了, 具体看论文. 
         训练它们的方式和RCNN的方式差不多. 具体可以实验室师兄的一篇blog
          个人觉的该训练的要点有两个:
              i. 在单帧上训练的.
             ii. CNN模型的初始化. 
                  众所周知, deep model的初始化很重要.
                   Spatial-CNN是用在Pascal Voc 2012的detection task上训练好的CNN模型来初始化.
                  Motion -CNN则是在 UCF101 Motion数据集上训练好的CNN模型来初始化.
         至于训练时的一些细节问题, 如学习率, 数据argumentation等, 请各位看官自己看论文哈.
    c. 提取 训练Spatial-CNN和Motion-CNN的FC7特征
         这里只是将CNNs的fc7特征拼接起来, 简单暴力. 
         可以看下这篇blog的特征是怎么进一步融合的.
    d. 训练actions的linear svms.
             

2 Linked detection in time produce action tubes
  这一步是基于component 1来弄的.
       a.  对每帧提取相应的regions, 每个region过Spatial-CNN和Motion-CNN, 来提取fc7特征, 
            后经svms, 来获取对应的action scores.
       b. 对每个类别, 每个视频, 利用下图的公式来找出linked-action tubes.
        
        
          即通过找出相邻两帧之间属于某个action类别的得分最高(score+IoU)的两个regions(一帧一个)
          然后将这些regions串联起来形成action tube.
         那么怎么计算一个action tube的action acore?
              

当然论文没有这么就完事了, 基于action tube的基础上, 进行了video的 action classification.
这个非常简单, 请看公式:
     

至于效果嘛, 肯定是state-of-art的说说.



该篇论文的 main contributions, 个人觉有以下几点:
  a. 结合了Appearance和Motion signals.
  b. 证实了 Appearance和Motion signals是 complementary的.
  c. 用Motion signal来消去那些non-discriminative的regions, 这个比较新颖.

当然也有不足:
  a. dataset大部分是针对一个actor的, 该方法会在多个actor的情况下效果是非常poor的.
  b. Motion是事先算好的, 而不是学习的.
  c. 整个framework非常pipeline.



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值