论文题目P-CNN: Pose-based CNN Features for Action Recognition,
链接
之前看过在静态图像上做action recognition的论文, 如
Georgia Gkioxari这位大美女的论文, Contextual Action Recognition with R*CNN (可以看zhujin师兄的
blog)
和RGB视频里面的action recognition的论文, 如Recognize Complex Events from Static Images by Fusing Deep Channels (可以看zhujin师兄的

本文介绍了P-CNN方法,通过结合姿态估计和预训练的CNN模型,提取视频中每一帧的动作特征。首先,使用最先进的姿态估计算法获取视频帧的姿势信息,然后定义身体部位并截取RGB和运动图的补丁。接着,利用预训练的CNN模型提取特征,并通过聚合方法(如最大值、最小值和平均值)生成固定大小的视频特征。实验表明,运动信息对识别的影响超过RGB信息。最后,使用SVM训练动作分类器,可能需要对高维特征进行降维处理。尽管流程清晰,但这种方法在创新性方面较弱。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



