P-CNN: Pose-based CNN Features for Action Recognition (CNN篇)

本文介绍了P-CNN方法,通过结合姿态估计和预训练的CNN模型,提取视频中每一帧的动作特征。首先,使用最先进的姿态估计算法获取视频帧的姿势信息,然后定义身体部位并截取RGB和运动图的补丁。接着,利用预训练的CNN模型提取特征,并通过聚合方法(如最大值、最小值和平均值)生成固定大小的视频特征。实验表明,运动信息对识别的影响超过RGB信息。最后,使用SVM训练动作分类器,可能需要对高维特征进行降维处理。尽管流程清晰,但这种方法在创新性方面较弱。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文题目P-CNN: Pose-based CNN Features for Action Recognition,  链接

之前看过在静态图像上做action recognition的论文, 如 Georgia Gkioxari这位大美女的论文, Contextual Action Recognition with R*CNN (可以看zhujin师兄的 blog)
和RGB视频里面的action recognition的论文, 如Recognize Complex Events from Static Images by Fusing Deep Channels (可以看zhujin师兄的
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值