基于深度学习的电子邮件分类系统的设计与实现

目 录
引 言 1
第一章 绪论 2
1.1 课题研究背景和意义 2
1.1.1 研究背景 2
1.1.2 研究意义 2
1.2 国内外研究现状及发展趋势 3
1.2.1 国外研究现状 3
1.2.2 国内研究现状 3
1.2.3 发展趋势 4
1.3 论文的主要工作 5
1.4 论文的组织安排 5
第二章 相关理论概述 7
2.1 开发语言及工具概述 7
2.1.1 Python简介 7
2.1.2 PyCharm软件简介 7
2.1.3 CNN LISTM-attention深度学习库 8
2.2 相关技术概述 9
2.2.1 深度学习概述 9
2.2.2 卷积神经网络(CNN) 9
2.2.3 长短时记忆网络(LSTM)与注意力机制(Attention) 9
2.2.4 电子邮件分类技术 10
第三章 电子邮件分类方案论证 11
3.1运行环境 11
3.2监督学习 11
3.3CNN LISTM-attention模型 11
3.4交叉熵损失函数 13
3.5反向传播的网络训练与优化器 13
第四章 电子邮件分类过程论述 15
4.1CNN LISTM-attention模型的垃圾邮件分类算法流程图 15
4.3导入Python中使用到的数据分析库与深度学习库 15
4.3数据下载与收集 16
4.4数据集的初探索与划分 16
4.5数据的归一处理 18
4.6CNN LISTM-attention模型分类器的搭建 18
4.7网络的可视化 19
4.8使用预处理后的数据训练模型 20
4.9优化器——训练CNN LISTM-attention模型 20
第五章 实验结果与分析 22
5.1计算模型垃圾邮件识别最终精度 22
5.2分类报告——精确度和召回率 22
5.3对比实验——数据标准化与非标准化 22
结 论 24
致 谢 25
参考文献 26
1.3 论文的主要工作
本文的主要工作集中在基于深度学习的电子邮件分类系统的设计与实现上。具体而言,论文完成了以下几个方面的工作:
首先,论文构建了一个包含健康邮件和垃圾邮件的数据集,并对数据集进行了预处理和特征提取。通过对邮件文本进行分词、去除停用词和特征编码等操作,为后续的分类任务提供了有效的数据支持。
其次,论文设计并实现了基于CNN和LSTM-Attention的深度学习模型,用于电子邮件的分类任务。模型结合了CNN在局部特征提取方面的优势和LSTM-Attention在时序依赖信息捕捉及重要特征加权方面的能力,从而提高了分类的准确性和效率。
此外,论文还对比了朴素贝叶斯分类器与深度学习模型在电子邮件分类任务上的性能差异。通过实验验证,深度学习模型在准确率、召回率和F1值等评估指标上均优于朴素贝叶斯分类器,证明了深度学习在电子邮件分类任务中的有效性。
最后,论文对实验结果进行了深入的分析和讨论,探讨了模型性能的影响因素以及可能的改进方向。同时,论文还总结了本研究的主要贡献和创新点,为后续的研究工作提供了有益的参考和借鉴。
1.4 论文的组织安排
本文的组织安排如下:
第一章为绪论,介绍了课题的研究背景和意义、国内外研究现状及发展趋势、论文的主要工作以及组织安排。
第二章为相关技术介绍,详细阐述了深度学习、CNN、LSTM-Attention以及电子邮件分类等相关技术的基本原理和应用场景,为后续的系统设计和实现提供了理论支持。
第三章为系统设计与实现,详细介绍了电子邮件分类系统的整体架构、数据集构建与处理、模型设计与实现以及实验设计与评估方法。
第四章为实验结果与分析,展示了实验结果的详细信息,包括准确率、召回率、F1值等指标,并对实验结果进行了深入的分析和讨论。
第五章为结论与展望,总结了本文的主要研究成果和贡献,指出了研究中存在的不足和未来的改进方向,并对未来的研究工作进行了展望。
通过以上的组织安排,本文系统地介绍了基于深度学习的电子邮件分类系统的设计与实现过程,为读者提供了清晰的研究思路和完整的研究内容。

import numpy as np
import pandas as pd
# 数据标准化预处理
from sklearn.preprocessing import StandardScaler, MinMaxScaler
# 数据集的切分
from sklearn.model_selection import train_test_split
# 评价模型预测效果
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# 全连接网络的搭建和训练
import torch
import torch.nn as nn
import torch.utils.data as Data
# 可视化工具
import hiddenlayer as hl
from torchviz import make_dot

###############################1、垃圾邮件数据准备########################
spam = pd.read_csv("spambase.csv")
print(pd.value_counts(spam.iloc[:, 57]))  # 统计正常邮件和垃圾邮件的数量

# 将数据随机切分为训练集和测试集,75%为训练集,25%为测试集
X = spam.iloc[:, 0:57].values  # 特征值
Y = spam.iloc[:, 57].values  # spam的最后一列为标签
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25, random_state=123)
# 对数据的前57列特征进行数据标准化处理
scales = MinMaxScaler(feature_range=(0, 1))
X_train_s = scales.fit_transform(X_train)
X_test_s = scales.transform(X_test)


# 数据特征可视化
# colname=spam.columns.values[:-1]
# plt.figure(figsize=(20,14))
# for ii in range(len(colname)):
#     plt.subplot(7,9,ii+1)
#     sns.boxplot(x=Y_train,y=X_train_s[:ii])
#     plt.title(colname[ii])
# plt.subplots_adjust(hspace=0.4)
# plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值