我的2022

博主总结2022年,工作节奏放缓,基于水泥行业孵化的项目开花结果获央视点赞。面对工作难题,深入学习K8s、大数据技术栈等知识,还参加软考。2023年目标包括保持健康、持续打磨产品、通过软考高级、公众号月更等。

前言

时光飞逝,光阴荏苒,2022不知不觉已结束。回想这一年里发生的事情,有辛酸不易,有困难重重,也有雨过天晴。简单总结下我的2022,无论过往如何终将逝去,愿我们在2023越来越好!

一、保持身体健康

健康好比数字1,家庭、孩子、事业、金钱都是0。失去了1,后面的0便毫无意义。1做好了,后面的0越多越富有。道理大家都懂,但就是很难做好。

年初定下每周运动3次的目标,当互联网裁员潮+35岁中年危机同时来袭,真的完全提不起运动的兴致,作息也变得不太规律。通过多学习、多总结、多沉淀,加上工作上取得了一定的成绩,自己的焦虑也就慢慢消散了,逐步开始每周打羽毛球等运动。

年底新冠疫情政策突发放开,病毒传播速度极快,我认识的所有人几乎在一个月内都“羊过”。虽然专家说99%都是轻症,但新闻上重症也不少,为了避免我上班把病毒带回家,便一直跟家人分开住,直到家里所有人都羊了,就我一人还没羊,我大概就是那个“天选打工人”吧。

二、工作节奏放缓

2022年的工作节奏相比2021进一步放缓,大多能在22点前下班了(2020年是0点后、2021年是23点后)。工作节奏放缓最主要有3个原因:一是产品越来越稳定,救火时间大幅减少;二是因为新冠疫情导致很多工厂停工;三是由于夏季高温干旱,全国各个省份都在实行限电,很多工厂也因此受影响。

三、项目开花结果

2020年基于水泥行业从0到1孵化了工业大脑智能优化控制系统AICS。

2021年持续打磨AICS产品核心能力,并从点到面沉淀了不少行业解决方案。

2022年重点做规模化复制,我们做的事情被央视点赞,我所负责的水泥行业也终于开花结果。

1、央视点赞!阿里云奔赴工业生产“第一线”
2、再减碳6万余吨!牵手华新水泥,打造低碳制造新系统

四、持续学习成长

项目中遇到了K8s多节点集群资源调度不均衡问题,深入学习K8s调度相关的源码。

工作中遇到大数据处理场景,整体熟悉了大数据技术栈,并对ClickHouse做了性能分析。

工作中为提升资源利用率和调度性能,学习了Hadoop和Flink的资源和计算调度核心架构。

参加了软考高级职称,利用业余时间备考了一个月,比较可惜的是上午的选择题差2分通过。

2022全年公发了6篇公众号,具体如下:

1、我的2021
2、初识工业互联网
3、深入浅出PID算法
4、解决k8s调度不均衡问题
5、记一次 ClickHouse 性能测试
6、2022下半年《软考-系统架构设计师》备考经验分享

虽然没有完成月更目标,但相比2021年的2篇,也算是有亿点进步,2023年再接再厉。

五、2023年目标

健康:每天睡眠7小时,每周尽量运动,体重控制在125左右。

工作:持续打磨产品,完成技术架构演进,帮助团队完成更大的业务目标。

成长:通过软考高级,公众号争取月更,提高英语水平,尝试录制短视频。

标题人事档案管理系统设计与实现研究AI更换标题第1章引言介绍人事档案管理系统的研究背景、意义、国内外研究现状以及论文的方法和创新点。1.1研究背景与意义分析人事档案管理在企业中的重要性及系统开发的必要性。1.2国内外研究现状概述国内外人事档案管理系统的研究进展和现状。1.3研究方法及创新点阐述本文的研究方法和在系统设计上的创新点。第2章相关理论介绍人事档案管理系统设计的相关理论。2.1档案管理理论阐述档案分类、存储、检索等基本理论。2.2信息系统开发理论介绍信息系统开发的基本流程、方法和技术。2.3数据库管理理论讨论数据库设计、数据安全与备份等理论。第3章人事档案管理系统设计详细介绍人事档案管理系统的设计方案和实现过程。3.1系统需求分析分析系统的功能需求、性能需求和用户需求。3.2系统架构设计给出系统的整体架构、模块划分和交互流程。3.3数据库设计设计数据库结构,包括表结构、字段设置和关系模型。第4章系统实现与测试阐述人事档案管理系统的实现过程和测试方法。4.1系统开发环境与工具介绍系统开发所使用的环境和工具。4.2系统实现过程详细描述系统各个模块的实现过程和关键代码。4.3系统测试与优化对系统进行功能测试、性能测试和安全测试,并进行优化。第5章研究结果与分析呈现人事档案管理系统的实验分析结果。5.1系统功能实现情况介绍系统各项功能的实现情况和效果。5.2系统性能评估从响应时间、吞吐量等指标评估系统性能。5.3对比方法分析将本系统与其他类似系统进行对比分析,突出优势。第6章结论与展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括本文的主要研究结论和系统实现效果。6.2展望指出系统存在的不足和未来改进的方向。
提供了关于时间序列分析与预测的宝贵资源,特别聚焦于**自回归积分滑动平均模型(ARIMA)**及其应用。对于那些希望深入理解并实践时间序列建模的学者、研究人员以及数据分析爱好者来说,这是一个不可或缺的学习材料。本资源不仅包括了详细的理论讲解,涵盖了时间序列分析的基础,如移动平均(MA)、自回归(AR)、指数平滑等关键概念,而且通过具体的ARIMA模型解析,搭配MATLAB编程实现实例,帮助用户从理论到实践全面掌握这一重要统计工具。 内容概览 理论讲解: 深入浅出地介绍了时间序列分析的基本原理,重点阐述ARIMA模型的构建步骤,包括如何识别模型的参数(p,d,q),以及其在处理非平稳数据中的作用。 MATLAB代码实现: 提供了多个ARIMA模型的MATLAB实现示例,这些代码覆盖了从数据准备、模型拟合、诊断检验到预测的全过程,是学习如何利用MATLAB进行时间序列分析的实用工具。 实例分析: 包括不同行业或领域的实际案例研究,展示如何应用ARIMA及其它时间序列方法解决真实世界的数据预测问题,增强理解和应用能力。 文件结构 时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar: 主要资源压缩包,解压后包含文档和MATLAB代码文件夹。 文档: 提供了理论知识讲解。 MATLAB代码: 实现了文中讨论的各种模型,附带注释,便于理解与修改。 使用指南 下载资源: 点击下载“时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar”文件。 解压文件: 解压缩至本地,确保你可以访问文档和代码。 环境准备: 确保你的电脑上已安装MATLAB,并熟悉基本操作。 学习流程: 首先阅读文档理解时间序列分析的理论基础,然后逐步跟随MATLAB代码示例进行实践。 实践应用: 尝试将所学应用到自己的数据集上,调整参数以优化模型性能。 注意事项 请根据M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值