(13)幂模m与逐次平方法

逐次平方法

如何计算

5 100   000   000   000   000 ( m o d    12   830   603 ) 5^{100\ 000\ 000\ 000\ 000}(\mod 12\ 830\ 603) 5100 000 000 000 000(mod12 830 603)

呢?如果12830603是素数,你会设法使用费马小定理,即使不是素数,也可以利用欧拉公式。事实上, 12   830   603 = 3571 ⋅ 3593 12\ 830\ 603=3571\cdot3593 12 830 603=35713593

ϕ ( 12   830   603 ) = ϕ ( 3571 ) ⋅ ϕ ( 3593 ) = 3570 ⋅ 3592 = 12   823   440 \phi(12\ 830\ 603)=\phi(3571)\cdot\phi(3593)=3570\cdot3592=12\ 823\ 440 ϕ(12 830 603)=ϕ(3571)ϕ(3593)=35703592=12 823 440

欧拉公式告诉我们,对任何a与m,若 g c d ( a , m ) = 1 gcd(a,m)=1 gcd(a,m)=1,则

a ϕ ( m ) ≡ 1 ( m o d    m ) a^{\phi(m)}\equiv1(\mod m) aϕ(m)1(modm)

所以可利用事实

100   000   000   000   000 = 7   798   219 ⋅ 12   823   440 + 6   546   640 100\ 000\ 000\ 000\ 000=7\ 798\ 219\cdot12\ 823\ 440+6\ 546\ 640 100 000 000 000 000=7 798 21912 823 440+6 546 640

来“简化”我们的问题:

5 100   000   000   000   000 = ( 5 12   823   440 ) 7   798   219 ⋅ 5 6   546   640 5^{100\ 000\ 000\ 000\ 000}=(5^{12\ 823\ 440})^{7\ 798\ 219}\cdot5^{6\ 546\ 640} 5100 000 000 000 000=(512 823 440)7 798 21956 546 640
≡ 5 6   546   640 ( m o d    12   830   603 ) \equiv5^{6\ 546\ 640}(\mod 12\ 830\ 603) 56 546 640(mod12 830 603)

现在“只”需计算5的 6   546   640 6\ 546\ 640 6 546 640次幂,然后用模 12   930   603 12\ 930\ 603 12 930 603进行简化。不幸的是,数 5 6   546   640 5^{6\ 546\ 640} 56 546 640有400多万位数,即使用计算机计算也是很困难的。

用来计算 a k ( m o d    m ) a^k(\mod m) ak(modm)的一个巧妙想法叫做逐次平分法

逐次平分计算 a k ( m o d    m ) a^k(\mod m) ak(modm)

1.将k表成2的幂次和:

k = u 0 + u 1 ⋅ 2 + u 3 ⋅ 2 2 + ⋯ + u r ⋅ 2 r k=u_0+u_1\cdot 2+u_3\cdot2^2+\cdots+u_r\cdot2^r k=u0+u12+u322++ur2r

其中每个 u i u_i ui是0或1。(这种表示式叫做k的二进制展开。)

2.使用逐次平分法制作模m的a的幂次表。

a 1 ≡ A 0 ( m o d    m ) a^1\equiv A_0(\mod m) a1A0(modm)
a 2 ≡ ( a 1 ) 2 ≡ A 0 2 ≡ A 1 ( m o d    m ) a^2\equiv (a^1)^2\equiv A_0^2\equiv A_1(\mod m) a2(a1)2A02A1(modm)
a 4 ≡ ( a 2 ) 2 ≡ A 1 2 ≡ A 2 ( m o d    m ) a^4\equiv (a^2)^2\equiv A_1^2\equiv A_2(\mod m) a4(a2)2A12A2(modm)
a 8 ≡ ( a 4 ) 2 ≡ A 2 2 ≡ A 3 ( m o d    m ) a^8\equiv (a^4)^2\equiv A_2^2\equiv A_3(\mod m) a8(a4)2A22A3(modm)
⋯ \cdots
a 2 r ≡ ( a 2 r − 1 ) 2 ≡ A r − 1 2 ≡ A r ( m o d    m ) a^{2r}\equiv (a^{2r-1})^2\equiv A_{r-1}^2\equiv A_r(\mod m) a2r(a2r1)2Ar12Ar(modm)

注意要计算表的每一行,仅需要取前一行最末的数,平方它然后用模m简化。也注意到表有 r + 1 r+1 r+1行,其中r是第1步中k的二进制展开式中2的最高指数。

3.乘积

A 0 u 0 ⋅ A 1 u 1 ⋅ A 2 u 2 ⋯ A r u r ( m o d    m ) A_0^{u_0}\cdot A_1^{u_1}\cdot A_2^{u_2}\cdots A_r^{u_r}(\mod m) A0u0A1u1A2u2Arur(modm)

同余于 a k ( m o d    m ) a^k(\mod m) ak(modm)。注意到所有 u i u_i ui是0或1,因此这个数实际上是 u i u_i ui等于1的那些 A i A_i Ai的乘积。
证明

a k = a u 0 + u 1 ∗ 2 + u 2 ∗ 2 2 + ⋯ + u r ∗ 2 r a^k=a^{u_0+u_1*2+u_2*2^2+\cdots+u_r*2^r} ak=au0+u12+u222++ur2r
= a u 0 ⋅ ( a 2 ) u 1 ⋅ ( a 2 2 ) u 2 ⋯ ( a 2 r ) u r =a^{u_0}\cdot (a^2)^{u_1}\cdot (a^{2^2})^{u_2}\cdots(a^{2^r})^{u_r} =au0(a2)u1(a22)u2(a2r)ur
= A 0 u 0 ⋅ A 1 u 1 ⋅ A 2 u 2 ⋯ A r u r ( m o d    m ) =A_0^{u_0}\cdot A_1^{u_1}\cdot A_2^{u_2}\cdots A_r^{u_r}(\mod m) =A0u0A1u1A2u2Arur(modm)

代码实现

int power(int e,int n) {//无模运算
	if (e == 1 || n == 0)return 1;
	return n % 2 == 1 ? e * power(e*e, n / 2) : power(e*e, n / 2);
}
int power(int e, int n, int m) {//加入了取模运算
	if (e == 1 || n == 0)return 1;
	return n % 2 == 1 ? (e * power((e*e)%m, n / 2, m)) % m : power((e*e)%m, n / 2, m);
}
int power(int e, int n, int m) {//位运算优化
	if (e == 1 || n == 0)return 1;
	return n & 1 ? (e * power((e*e) % m, n >> 1, m)) % m : power((e*e) % m, n >> 1, m);
}

快速证明合数

之前我们要证明一个数是合数,需要试着用不超过 n \sqrt{n} n 的每个数去除,查看能否找到因数。这样显然效率很低。
有了费马小定理与逐次平方法,我们就有办法快速的证明一个数是合数,而不用求出任何它的因数。
假设我们想证明m为合数。
(1)我们取一个小于m的数a。
(2)计算 g c d ( m , a ) gcd(m,a) gcd(m,a),如果 g c d ( m , a ) ≠ 1 gcd(m,a)\not=1 gcd(m,a)=1那么说明我们已经找到了m的一个因数,得证。
(3)如果 g c d ( m , a ) = 1 gcd(m,a)=1 gcd(m,a)=1,那么计算

a m − 1 ( m o d    m ) a^{m-1}(\mod m) am1(modm)

如果m是素数那么一定有 a m − 1 ≡ 1 ( m o d    m ) a^{m-1}\equiv 1(\mod m) am11(modm),所以如果 a m − 1 ≡ 1 ( m o d    m ) a^{m-1}\equiv1(\mod m) am11(modm),那么m一定不是素数即是个合数,这样我们就不用求任何因数证明了一个数是合数。
其中 a m − 1 ( m o d    m ) a^{m-1}(\mod m) am1(modm)可以通过逐次平方法快速求解。

我们可以通过改变a的值,如 a = 5 , 7 , 11 ⋯ a=5,7,11\cdots a=5,7,11发现m使 a m − 1 ≡ 1 ( m o d    m ) a^{m-1}\equiv1(\mod m) am11(modm)是不是可以断言m是一个素数呢?很有可能,可惜不一定。

注意通过费马小定理不能结论性的证明一个素数,因为的确存在合数使得任意a, a m − 1 ≡ 1 ( m o d    m ) a^{m-1}\equiv 1(\mod m) am11(modm)这样的m被称为卡米歇尔数。最小的卡米歇尔数是561,之后我们会进一步研究卡米歇尔数。

代码实现

#include<iostream>
using namespace std;

int n;

int Eucild(int a, int b)
{
	int r = a % b;
	while (r)
	{
		a = b;
		b = r;
		r = a % b;
	}
	return b;
}

int power(int e, int n, int m) {
	cout << e << ' ' << n << ' ' << m << endl;
	if (e == 1 || n == 0)return 1;
	return n & 1 ? (e * power((e*e) % m, n >> 1, m)) % m : power((e*e) % m, n >> 1, m);
}

bool isCombinde(int n) {
	int a = 2;
	if (n < a)return 0;
	int m = Eucild(n, a);
	if (m != 1)return 1;
	else if (power(a, n - 1, n) != 1)return 1;
	else return 0;
}

int main() {
	
	cin >> n;

	if (isCombinde(n))cout << n << "一定是合数" << endl;
	else cout << n << "可能是素数" << endl;

	system("pause");
	return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值