大语言模型之十一 Transformer后继者Retentive Networks (RetNet)

在《大语言模型之四-LlaMA-2从模型到应用》的LLama-2推理图中可以看到,在输入“你好!”时,是串行进行的,即先输入“你”这个token,然后是“好”,再然后是“!”token,前一个token需要保留前面的k和v矩阵,这就意味着随着输入sequence length的增长,需要的内存也会快速增长,计算量也会快速增长。这也显示了Transformer尽管在模型训练的时候并发(相比RNN)性能好,且模型的效果也好,但是推理的时候效率就比较低。

RetNet特点

微软提出的RetNet在训练并发、模型效果以及推理效率上都取得了不错的效果。下图是其paper中关于模型性能和推理效率和Transformer的对比情况。
在这里插入图片描述
其官方paper宣称,其实验数据显示,在语言建模任务上:
RetNet 可以达到与 Transformer 相当的困惑度(perplexity)
推理速度达8.4倍
推理算法延迟降低90%
内存占用减

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shichaog

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值