###什么是范数?
我们知道距离的定义是一个宽泛的概念,只要满足非负、自反、三角不等式就可以称之为距离。范数是一种强化了的距离概念,它在定义上比距离多了一条数乘的运算法则。有时候为了便于理解,我们可以把范数当作距离来理解。
在数学上,范数包括向量范数和矩阵范数,向量范数表征向量空间中向量的大小,矩阵范数表征矩阵引起变化的大小。一种非严密的解释就是,对应向量范数,向量空间中的向量都是有大小的,这个大小如何度量,就是用范数来度量的,不同的范数都可以来度量这个大小,就好比米和尺都可以来度量远近一样;对于矩阵范数,学过线性代数,我们知道,通过运算 A X = B AX=B AX=B,可以将向量X变化为B,矩阵范数就是来度量这个变化大小的。
这里简单地介绍以下几种向量范数的定义和含义
1、 L-P范数
与闵可夫斯基距离的定义一样,L-P范数不是一个范数,而是一组范数,其定义如下:
实际上,在0 ≤ p < 1 \le p\lt 1 ≤p<1时,Lp并不满足三角不等式的性质,也就不是严格意义下的范数。以p=0.5,二维坐标(1,4)、(4,1)、(1,9)为例, ( 1 + 4 ) 0.5 + ( 4 + 1 ) 0.5 < ( 1 + 9 ) 0.5 \sqrt[0.5]{(1+\sqrt{4})}+\sqrt[0.5]{(\sqrt{4}+1)}<\sqrt[0.5]{(1+\sqrt{9})} 0.5(1+4)+0.5(4+1)<0.5(1+9)。因此这里的L-P范数只是一个概念上的宽泛说法。
2、L0范数
当P=0时,也就是L0范数,由上面可知,L0范数并不是一个真正的范数,它主要被用来度量向量中非零元素的个数。用上面的L-P定义可以得到的L-0的定义为:
对于L0范数,其优化问题为:
3、L1范数
L1范数是我们经常见到的一种范数,它的定义如下:
L1范数有很多的名字,例如我们熟悉的曼哈顿距离、最小绝对误差等。使用L1范数可以度量两个向量间的差异,如绝对误差和(Sum of Absolute Difference):
对于L1范数,它的优化问题如下:
4、L2范数
L2范数是我们最常见最常用的范数了,我们用的最多的度量距离欧氏距离就是一种L2范数,它的定义如下:
对于L2范数,它的优化问题如下:
5、L-
∞
范
数
\infty范数
∞范数
当P=
∞
\infty
∞时,也就是L-
∞
\infty
∞范数,它主要被用来度量向量元素的最大值。用上面的L-P定义可以得到的L
∞
\infty
∞的定义为: