为什么特征独立型的模型遇到高度相关特征效果会不好?

在机器学习中,去除冗余和高度相关特征是特征选择的重要步骤。冗余特征可能导致训练时间增加和模型判断过度自信。以朴素贝叶斯和逻辑斯蒂回归为例,冗余特征并未增加信息量,却影响模型分类的置信度,从而降低模型性能。通过具体案例解析了冗余特征如何影响模型效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在利用一些机器学习模型分类的时候,一般都会进行特征选择过程,消除掉冗余特征和高度相关特征,比如朴素贝叶斯,逻辑斯蒂。为什么要这么做呢?主要有以下两个原因。
1) 一个原因比较显而易见,就是若冗余特征过多,会造成特征数目过多,从而分析特征,训练模型所需要的时间就会越长;
2) 冗余特征会使得并没有增加输入信息的前提下增加模型判别的置信度,这显然是不合理的。
下面着重解释下原因(2),为什么冗余特征会增加模型判别的置信度:
以朴素贝叶斯为例,由贝叶斯公式可以推导:


p(y|x)=p(y)i=1np(xi|y)yi=1np(xi|y)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值