我们知道,在逻辑代数中,有与、或、非三种基本逻辑运算。通过三种基本逻辑运算之间的组合运算,又可以构造出与非、或非、异或等常用运算。我们在编写计算机代码的时候,通过加减乘除运算符可以很容易地实现该基本运算,但是我们如何使用逻辑运算来实现算术加减乘除基本运算呢?
1、如何只用逻辑运算实现加法运算
在实现代码之前,我们先来分析一下加法的运算特点。例如 ,5和7求和,转换为二进制求和为101和111的求和,其二进制结果为1100,即十进制数12。对于二进制的加法而言,1+1=0,0+1=1,1+0=1,0+0=0,通过对比位运算中的异或运算,不难发现,此方法与位运算中的异或运算形式很类似,唯一不同是异或运算缺少了相应位置的进位。如果我们能够表示出进位,那么加法运算就可以转换成异或运算+进位运算。现在我们考虑如何表示出两位加数相应位置的进位,我们知道,只有1+1=10的时候会产生向高位的进位,其余三种情况进位都为0,那么该形式我们就可以用逻辑运算“与”来表示,为了表示出向高位进位的动作,我们需要将与出来的结果进行向左移位。简而言之,我们的转换思路是:num1+num2=nunm1^num2+(num1&num2)<<1。
// test_2.cpp : 定义控制台应用程序的入口点。
//算法实现的递归程序如下所示:
#include "stdafx.h"
#include"stdlib.h"
int add(int num1,int num2);
void main(){
printf("%d",add(200,300));
system("pause");
}
int add(int num1,int num2){
if(0==num2)
return num1;//若进位为0,运算结束
int temp=num1^num2;
int carry=(num1&num2)<<1;
return add(temp,carry);//若存在不为0的进位,则重复运算
}
//转换为非递归后的算法
int add2(int num1,int num2){
int temp=0;
int carry=0;
while(num2!=0){
temp=num1^num2;
carry=(num1&num2)<<1;
num1=temp;
num2=carry;
}
return num1;
}
2、如何只用逻辑运算实现减法运算
将减法转换为加法,实现方法与加法相同,如7-5=7+(-5)。
3、如何只用逻辑运算实现乘法运算
在开始本问题之前,我们先熟悉一些有关位运算的知识
(1)常用的等式:-n=~(n-1)=~n+1。
(2)获取整数n的二进制中的最后一个1:n&(-n)或n&~(n-1)。
(3)去掉整数n的二进制中的最后一个1:n&(n-1)。
我们还是先从一个例子开始分析,1011*1010,因为二进制运算的特殊性,可以将该乘法运算表达式拆分为两个运算,1011*1000和1011*0010的和,从而转换为左移运算,即乘法可以转换为移位和加法运算。最后一个1可以通过n&~(n-1)求得,可通过n&(n-1)去掉,为了高效地得到左移的位数,可以添加一个map容器,算法如下所示:
int multiply(int a ,int b){
int sum=0;
map<int,int>m_map;
for(int i=0;i<32;i++)
m_map.insert(pair<int,int>(1<<i,i));//将int类型的32位状态加入map容器
while(b!=0){
int last_bit=m_map[b&~(b-1)];//取最后一个1的下标
sum+=(a<<last_bit);//完全只用逻辑运算的话,该句可以调用加法函数实现
b&=b-1;
}
if(a>0&&b<0||a<0&&b>0)
sum=-sum;
return sum;
}
4、如何只用逻辑运算实现除法运算
一般除法可以采用减法操作或移位操作实现。
(1)减法操作就是循环用被除数减去除数,每减一次值加1,直到被除数小于除数为止。程序如下
int div(int a,int b ){ int result=0; if(b==0){ printf("error!"); return; } while(a>=b){ result++; a-=b; } return result; }
(2)采用移位操作实现,位操作的效率一般都比较高效。程序如下:int div2( int a, int b){ int left_num=a; int result=0; while(left_num>=b){ int mul=1;//乘数因子 while(b*mul<=(left_num>>1)) mul=mul<<1; result+=mul; left_num-=b*mul; } return result; }