代码随想录day49 动态规划 买卖股票问题
题123 买卖股票最佳时机3
1,关键在于至多买卖两次,这意味着可以买卖一次,可以买卖两次,也可以不买卖。
2,接来下我用动态规划五部曲详细分析一下:
- 确定dp数组以及下标的含义
一天一共就有五个状态,
没有操作 (其实我们也可以不设置这个状态)
第一次持有股票
第一次不持有股票
第二次持有股票
第二次不持有股票
dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。
需要注意:dp[i][1],表示的是第i天,买入股票的状态,并不是说一定要第i天买入股票。
例如 dp[i][1] ,并不是说 第i天一定买入股票,有可能 第 i-1天 就买入了,那么 dp[i][1] 延续买入股票的这个状态。
-
确定递推公式
达到dp[i][1]状态,有两个具体操作:
操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1],所以 dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);同理dp[i][2]也有两个操作:
操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])同理可推出剩下状态部分:
dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]); -
dp数组如何初始化
第0天没有操作,这个最容易想到,就是0,即:dp[0][0] = 0;
第0天做第一次买入的操作,dp[0][1] = -prices[0];
第0天做第一次卖出的操作,这个初始值应该是多少呢?
此时还没有买入,怎么就卖出呢? 其实大家可以理解当天买入,当天卖出,所以dp[0][2] = 0;
第0天第二次买入操作,初始值应该是多少呢?应该不少同学疑惑,第一次还没买入呢,怎么初始化第二次买入呢?
第二次买入依赖于第一次卖出的状态,其实相当于第0天第一次买入了,第一次卖出了,然后再买入一次(第二次买入),那么现在手头上没有现金,只要买入,现金就做相应的减少。
所以第二次买入操作,初始化为:dp[0][3] = -prices[0];
同理第二次卖出初始化dp[0][4] = 0.
class Solution {
public int maxProfit(int[] prices) {
int[][] dp = new int[prices.length][5];
dp[0][0] = 0; //代表不做任何操作, 其实可以不设,一直为0.
dp[0][1] = 0 - prices[0]; // 代表第一次持有
dp[0][2] = 0; // 第一次不持有,可以理解为第一天买入又卖出
dp[0][3] = 0 - prices[0]; // 第二次持有
dp[0][4] = 0; //第二次不持有, 买入卖出又买入
for(int i = 1; i < prices.length; i++) {
dp[i][1] = Math.max(-prices[i], dp[i - 1][1]);
dp[i][2] = Math.max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
dp[i][3] = Math.max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
dp[i][4] = Math.max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
}
return dp[prices.length - 1][4];
}
}
题188 买卖股票最佳时机4
1,买卖多次j, 将j分奇偶,奇数代表持有,偶数代表不持有,则情况就与上一题类似了。
class Solution {
/**
dp[i][j],j为奇数表示第j次持有,j为偶数表示第j次不持有
*/
public int maxProfit(int k, int[] prices) {
int[][] dp = new int[prices.length][2 * k + 1];
//初始化第一行
for(int j = 1; j < 2 * k + 1; j++) {
if(j % 2 == 1) {
dp[0][j] = -prices[0];
}
if(j % 2 == 0) {
dp[0][j] = 0;
}
}
for(int i = 1; i < prices.length; i++) {
for(int j = 1; j < 2 * k + 1; j++) {
if(j % 2 == 1) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] - prices[i]);
}
if(j % 2 == 0) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + prices[i]);
}
}
}
return dp[prices.length - 1][2 * k];
}
}
1092

被折叠的 条评论
为什么被折叠?



