不同路径-动态规划和排列组合

很久不写博客了,今天看个题目。
原题如下:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

动态规划

来自动态规划一节的题目,自然是动态编程。

def uniquePaths(self, m: int, n: int) -> int:
#创建一个m*n的二维数组,并且全为1
        dp = [[1]* n for _ in range(m)]
#位置为(i,j)的元素上一步是来自左边或上边,则数字相加即为该位置的路径数       
        for i in range(1,m):
            for j in range(1,n):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
#取右下角元素的数值
        return dp[-1][-1] 

当然还可以,精简成一维数组,但实际上对于python来说并没有节省效率,甚至耗时还加长了,这就很尬尴,后面改成java。

public static int uniquePaths(int m, int n) {
        /**
         * 一维数组取最后一行
         *路径数为上边元素值与左边元素值相加
         * 最后取末尾元素
         */
        int[] dp = new int[n];
        dp[0] = 1;
        for (int i = 1; i < m+1; i++) {
            for (int j = 1; j < n; j++) {
                dp[j] += dp[j - 1];
            }
        }
        //System.out.println(Arrays.toString(dp));
        return dp[n-1];
    }

排列组合

突然想起来,自己在高中的时候做过类似的题目。这其实就是一个排列组合的问题。

机器人是向右走或向下走,向下走是m-1次,向右走是n-1次,
那么总次数是m+n-2,再从之选取向下走(或向右走),
可以得到总路径数

s = C(m+n-2,m-1) or C(m+n-2,n-1).
3行7列的网格,路径数即为 C(8,2)或C(8,6) = 28

pyython的math包下有直接计算组合数的方法,比起java使用BigInteger算阶乘要方便得多。

def uniquepaths2(m,n):
    return math.comb(m+n-2,m-1)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值