最短路径算法

Floyd算法

Dijkstra算法

Bellman-Ford算法

Dijkstra

void dijkstra(Table T)
{
    vertex v, w;
    for(;;)
    {
        v = smallest unknown distance vertex;
        if(v == NotAVertex)
            break;
        T[V].known = true; //每轮选取一个最短路径节点v进入生成树
        for each w adjacent to v
            if(!T[w].know)
                //更新非生成树中各点的权值
    }
}

Dijkstra算法不能处理负权值

使用中发现,权重为负,算法依然可能正常结束。但是Dijkstra 每一步都确定一个最短路径,并加入生成树中。节点只入队一次,无法更新已进入树中的节点的路径。这也是假设路径非负的直接结果。

对应《数据结构与算法分析——C语言描述》P304的改进算法

//不记录节点是否已经进入树中
//每次选取最短路径节点进入队列
//根据当前最短路径节点 更新 其它节点的路径

去掉了判断节点是否已经加入生成树中,依然更新最短路径。所以会产生节点重复进队的情况。从这里也可以看出Dijkstra算法速度快的原理。

但P304的改进程序,内循环的多次运行,导致遇到负值圈,算法无限循环,无法停止。

Floyd

Floyd的思路更简单。选取其它节点作为中继,来relax当前路径。
当同样无法处理 负值圈

Bellman-Ford

可以检测负值圈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值