(done) 如何判断一个矩阵是否可逆?

视频介绍了矩阵可逆性的判定方法,包括满秩、行列式不为零、无特征值为零以及Ax=0的唯一解。同时,详细解释了特征值在矩阵相似性、逆矩阵、伴随矩阵和转置矩阵中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考视频:https://www.bilibili.com/video/BV15H4y1y737/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600


这个视频里还暗含了一些引理
1.若 AX = XB 且 X 和 A,B 同阶可逆,那么 A 和 B 相似。原因:AX = XB ----> X^(-1)AX = B
2.若 A 有特征值,则 A - (lamda)E (E是单位矩阵) 的特征值全都要减去 (lamda)
3.若 A 有特征值,则 A^(-1) 的特征值是 原来特征值 的倒数
4.若 A 有特征值,则 A* (伴随矩阵) 的特征值是 “原来特征值的积 / 单独原来特征值”
5.若 A 有特征值,则 A^T 的特征值和原来的特征值一样


四种方式判断是否可逆
1.矩阵满秩
2.矩阵对应的行列式 != 0
3.矩阵没有 “特征值等于0” 的情况
4.Ax = 0 仅有零解
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值