机器学习中,准确率(Accuracy)、精确度(Precision)、召回率(Recall)、F1分数(F1Score) 分别是什么?有啥用?有啥意义?有啥缺陷?

首先明白四个名词:

  • 真正例 True Positive
  • 假正例 False Positive
  • 真负例 True Negative
  • 假负例 False Negative

TP: 被预测为真,实际为真的样本
FP: 被预测为真,实际为假的样本
TN: 被预测为假,实际为假的样本
FN: 被预测为假,实际为真的样本

准确率 (Accuracy) 计算公式:(TP + TN) / (TP + FP + TN + FN)
意义:被正确预测的样本占总样本的比例
缺陷:尽管准确率是一个很直观的指标,但在数据不平衡的情况下,它可能会产生误导。例如,在一个99%的样本属于同一类的数据集中,一个总是预测这个主要类的简单模型也会有99%的准确率,但这并不意味着模型是好的。

精准度 (Precision) 计算公式:TP / (TP + FP)
意义:在所有预测为真的样本中,实际为真的样本所占的比例
精确度是评估模型预测正类样本质量的一个好方法。

召回率 (Recall) 计算公式:TP / (TP + FN)
意义:在所有实际为真的样本中,被我们预测为真的样本的比例
召回率是评估模型找出正类样本能力的一个好方法。

F1分数 (F1score) 计算公式:2 x (Precision x Recall) / (Precision + Recall)
意义:F1分数是精确度和召回率的调和平均数,它试图在精确度和召回率之间达到平衡
在精确度和召回率同等重要的情况下,F1分数是一个有用的指标。它特别适用于不平衡数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值