首先明白四个名词:
- 真正例 True Positive
- 假正例 False Positive
- 真负例 True Negative
- 假负例 False Negative
TP: 被预测为真,实际为真的样本
FP: 被预测为真,实际为假的样本
TN: 被预测为假,实际为假的样本
FN: 被预测为假,实际为真的样本
准确率 (Accuracy) 计算公式:(TP + TN) / (TP + FP + TN + FN)
意义:被正确预测的样本占总样本的比例
缺陷:尽管准确率是一个很直观的指标,但在数据不平衡的情况下,它可能会产生误导。例如,在一个99%的样本属于同一类的数据集中,一个总是预测这个主要类的简单模型也会有99%的准确率,但这并不意味着模型是好的。
精准度 (Precision) 计算公式:TP / (TP + FP)
意义:在所有预测为真的样本中,实际为真的样本所占的比例
精确度是评估模型预测正类样本质量的一个好方法。
召回率 (Recall) 计算公式:TP / (TP + FN)
意义:在所有实际为真的样本中,被我们预测为真的样本的比例
召回率是评估模型找出正类样本能力的一个好方法。
F1分数 (F1score) 计算公式:2 x (Precision x Recall) / (Precision + Recall)
意义:F1分数是精确度和召回率的调和平均数,它试图在精确度和召回率之间达到平衡
在精确度和召回率同等重要的情况下,F1分数是一个有用的指标。它特别适用于不平衡数据集。