LSTM特点及适用性

LSTM是一种RNN变种,擅长处理时间序列问题,解决了传统RNN的梯度消失问题。在与前馈神经网络(FNN)、CNN的对比中,LSTM在处理具有长时依赖性的序列任务上表现优越,如机器翻译、情感分析。而CNN在固定长度输入输出的任务,如图像分类,表现出色。LSTM在深度学习领域,尤其是语言处理任务中有着广泛应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ProClaim:

之前一直在做CNN的一些研究,最近刚刚回到实验室,定下来了自己的小组,然后开始了一些LSTM的学习。


将近学习了两天半吧,结构弄得差不多了,Theano上LSTM tutorial 的例程也跑了跑,正在读代码ing。


这篇博客主要是我之后要做的一个小报告的梗概,梳理了一下LSTM的特点和适用性问题。


发在这里权当做开博客压压惊。


希望之后能跟各位朋友多多交流,共同进步。


1. 概念:

Long short-termmemory (LSTM)is a recurrent neuralnetwork (RNN)architecture (an artificialneural network)published[1] in 1997 by Sepp Hochreiter and Jürgen Schmidhuber. Like most RNNs, an LSTM network is universalin the sense that given enough network units it can compute anything aconventional computer can compute, provided it has the proper weight matrix, which may be viewed as its program. Unliketraditional RNNs, an LSTM network is well-suited to learn from experience to classifyprocess and 

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值