LSTM模型理论总结(产生、发展和性能等)

Proclaimation:

第一篇博客点击打开链接之后,对LSTM进行了一个较为深入的学习。首先从理论入手,深读了提出模型的原文,大概粗看了二十多篇Paper,关于RNN的问题的产生、LSTM模型的提出和原理,反传的推导之类,还有最近的LSTM的典型应用和性能分析等等。这个报告在我实验室内部小组和其他的小组两次分享过,这边再做一个总结写成博客,跟大家一同探讨。坦率地说,确实是越看越觉得新问题更多。

在这里感谢之前看LSTM的时候入门的两篇博客的作者,

RNN以及LSTM的介绍和公式梳理 以及 

LSTM简介以及数学推导(FULL BPTT) 


注:这篇博客侧重于对LSTM的理论进行阐述,并不会侧重于模型的讲解,需要一定的对LSTM和RNN的熟悉可能会更好的阅读博客。


LSTM理论推导总结

目录

1.      传统RNN的问题:梯度的消失和爆发

2.      LSTM对问题的解决方式

3.      LSTM对模型的设计

4.      LSTM训练的核心思路和推导

5.      近期LSTM的模型的改进

6.      LSTM的工作特性的研究

7.      一些可能存在的问题

8.      总结

9.      参考文献

 

 

1.传统RNN模型的问题:梯度的消失和爆发


本文中采用的同样的RNN的模型可以如图,其中net通常是激活函数之前的各个层的输入与权重的线性组合。

注:在LSTM原文(97年)中,以及相应一大批文献中,角标的顺序与现在我们通常写的相反。如:Wij代表从 j到i 。


接下来的推导主要源自LSTM的作者的论文《THE VANISHING GRADIENT PROBLEM DURING recurrent neural networks and problem solutions》

以及作者在提出LSTM的论文的前半部分也有一样的内容。


先看一下比较典型的BPTT(Back propgation through time)一个展开的结构,如下图,这里只考虑了部分图。


对于t时刻的误差信号计算如下:

推导公式如下:



上面的公式在整个BPTT乃至整个BP网络里都是非常常见的了。具体推导如下,做个演示:



那么如果这个误差信号一直往过去传呢,假设任意两个节点u, v他们的关系是下面这样的:



</

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值