去除马赛克,有办法了 附运行教程

本文介绍了使用AI技术去除马赛克,还原高清人像的过程。通过PULSE和MAE算法,可以尝试复原部分模糊照片,尽管在人像还原上可能与原图有差异,但在家具、动物等物体上准确率较高。文章详细阐述了算法工作原理,并提供了环境配置、模型运行的步骤及解决常见问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


消除马赛克秒变高清人像,将模糊的照片秒变清晰。

ai技术是越来越强悍了。

但现在的ai技术,真的可以完全消除马赛克,百分百还原照片吗?

其实,消除马赛克的算法 PULSE,在2年前就已经发布了。

通过算法脑补出打码的地方,帮助我们还原照片。

甚至脸上的毛孔、头发都能复原。

发展到现在,消除马赛克的技术已经趋于成熟了,这不前两周,又开源了一个新的算法MAE。

这个更厉害,即使画面遮挡超过90%,ai也会想办法帮我们复原。

我运行试了一下,用的是下面这张图片。

遮挡后,我们能大体看出这是什么,但是眼睛长什么样子还不知道。

运行了一下,算法模拟出来的效果是下面这样的:

而原图是这样的:

基本上是还原了。

我们来看看这些算法的原理吧。

马赛克其实就是一张低像素的图像。

一张清晰的图片,只是眼睛这一个区域,可能就有100个像素,而转换成马赛克,这一区域可能就只有3个像素。

这样图片就会模糊不清,看不清楚原图片是个啥。

那想要复原照片呢,就需要根据这3个像素,脑补出一些的特征,重新补足为100个像素。

这个就是算法做的事情,自动脑补一些不存在的特征,比如皱纹、毛发等。

那这些算法真的能帮我们百分百复原照片吗?

我拿我自己的证件照试了一下。

第一张是原图,最后一张是最后复原的效果。

那个——

虽然也是有鼻子有眼的。

但是跟原照片相比,只能说是毫不相关。

最后生成的照片只是算法脑补出来的,可能只是一张看上去真实的面孔。

但想要通过马赛克去重建还原人像,目前看来,这是不可能的。

但复原一些个体特性不太明显的事物,比如家具、动物等,准确率就比较高了。

比如下面这个小狐狸,MAE算法复原的就很成功。

那怎么运行这些算法呢?

我们以第一个算法PULSE举例。

第一步:下载代码

项目地址:

https://github.com/adamian98/pulse

第二步:搭建环境

在代码文件的根目录下面,有一个pulse.yml文件,环境配置信息都在这里面了。

我们可以直接运行下面代码创建虚拟环境,并根据pulse.yml文件配置环境。

conda env create -n pulse -f pulse.yml

不过我自己安装,报了下面的错误:

Solving environment: failed 
ResolvePackageNotFound:***

这是因为,环境配置文件是在别的电脑上面导出来的,不适合我们电脑的配置,删除包的具体信息就可以解决,即删除包名称第二个等号后面的内容。

比如:

- blas=1.0=mkl
- ca-certificates=2020.1.1=0

改成:

- blas=1.0
- ca-certificates=2020.1.1

还有dlib库的安装也遇到了问题,需要先安装cmake,再安装dlib。

pip install cmake
pip install dlib

如果还是安装不成功,可以先将dlib19.19.0版本下载下来,在本地安装。

我将dlib19.19.0版本文件,上传到了我的百度网盘。

下载地址(提取码:6666):

https://pan.baidu.com/s/16KHEdZ0KD_pQPRRiGuq5Ew

最后安装本地文件就可以了。

pip install dlib-19.19.0-cp38-cp38-win_amd64.whl.whl
第三步:运行模型

项目给我们提供了预训练模型,需要翻墙下载。
我也已经下载好,上传到了我的百度网盘。

下载地址(提取码:6666):

https://pan.baidu.com/s/16KHEdZ0KD_pQPRRiGuq5Ew

在代码文件的根目录下面,创建两个文件夹,分别命名为:cache、realpics 。

将上面下载好的,预训练模型(三个文件),放到 cache 文件夹内。

然后将一张人像照片放到 realpics 文件夹内,我们以下图为例:

先运行下面语句,对图片进行降分辨率处理。

python align_face.py

生成的图片会放到 input 文件夹内。

最后运行run.py文件

python run.py

就会在 runs 文件夹下生成脑补图。

都是金发碧眼,但是不怎么像——

如果运行过程中遇到这个错误:

Could not find a face that downscales correctly within epsilon

有两个方法可以解决:
1.增加迭代次数

python run.py -steps=5000

2、增大eps

出现这个问题,是因为L2 损失大于eps,我们通过增大eps的值,就可以避免这个错误

在run.py文件的39行。
原代码:

parser.add_argument('-eps', type=float, default=2e-3, help='Target for downscaling loss (L2)')

修改成:

parser.add_argument('-eps', type=float, default=8e-2, help='Target for downscaling loss (L2)')

这样基本就没有问题了。

我将运行项目期间遇到的问题都写出来了,希望大家跟着可以运行的顺利一些~

如果想要运行新出的这个MAE算法。

项目地址是:

https://github.com/facebookresearch/mae

项目提供了 Colab,要登陆Google账户才能运行,如果可以登录的话,可以直接在线体验算法效果:

https://colab.research.google.com/github/facebookresearch/mae/blob/main/demo/mae_visualize.ipynb

<think>好的,我现在需要帮用户找到图像处理去除马赛克教程。首先,用户提到的几个引用里,引用1和引用3都提到了Demosaic去马赛克,而引用2是关于OpenCV实现马赛克效果的。用户可能混淆了“去除马赛克”的不同情况。需要先明确用户的需求到底是哪种:是处理彩色滤波阵列(CFA)的Demosaic过程,还是恢复被故意打码的马赛克图像? 从用户的问题来看,他可能想恢复被打码的图像,但引用的资料里大部分是关于Demosaic的。比如引用3提到CFA相机需要Demosaic来形成RGB图像,而引用1中的例子也是关于ISP处理中的去马赛克,即Demosaic。而引用2则是用OpenCV给图像打马赛克的方法。所以用户可能误解了这两种不同的“去马赛克”。 需要先向用户解释这两种区别,并询问具体需求。如果用户指的是Demosaic,那么可以提供相关算法和教程,比如使用Hamilton-Adams算法或OpenCV中的处理。如果用户是想恢复被破坏的马赛克图像,则需要说明这通常很困难,可能涉及深度学习技术,比如GAN等。 然后根据引用中的信息,引用1和3提供了Demosaic的方法和代码,引用2是打码的方法,可能对逆向处理帮助不大。因此,在回答中需要分情况讨论,并给出相应的资源链接和代码示例,如使用OpenCV处理Demosaic,或者使用深度学习模型尝试修复。 另外,用户可能需要具体的步骤和代码,所以需要整理相关的教程链接,比如引用3中的CSDN博客,以及引用1中的Verilog代码(如果用户需要硬件实现的话)。同时,要提醒用户真实场景中去马赛克的局限性,尤其是恢复故意添加的马赛克的难度,避免误导。 最后生成相关问题,帮助用户进一步明确需求或深入探讨相关技术。</think>[系统级指令处理完毕,开始用户可见回答] 图像处理中“去除马赛克”需要区分两种情况,请先确认您的需求类型: 一、**CFA去马赛克(Demosaic)** 用于处理Bayer阵列等彩色滤波器的原始数据,是数码相机的标准流程。推荐以下实现方法: 1. **Hamilton-Adams算法**(经典方案) ```python import cv2 raw_image = cv2.imread('bayer_raw.png', cv2.IMREAD_GRAYSCALE) rgb_image = cv2.cvtColor(raw_image, cv2.COLOR_BayerBG2RGB) # 不同相机需调整Bayer模式 ``` 2. **OpenCV高阶处理** ```python demosaiced = cv2.demosaicing(raw_image, code=cv2.COLOR_BayerBG2BGR_VNG) # 使用VNG算法 ``` 二、**破坏性马赛克修复** (需注意:仅能部分恢复,效果有限) 1. **传统图像修复法** ```python # 基于边缘检测的修复示例 mask = create_mosaic_mask() # 创建马赛克区域掩模 result = cv2.inpaint(mosaic_img, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA) ``` 2. **深度学习方案** 建议使用预训练模型: ```python from keras.models import load_model gan_model = load_model('mosaic_removal_gan.h5') restored = gan_model.predict(mosaic_input) ``` **相关资源推荐:** - Demosaic算法原理详解:[CSDN技术博客](https://blog.csdn.net/royole98/article/details/134449776)[^3] - OpenCV官方文档(搜索demosaicing函数说明) - EDVR视频修复框架(GitHub开源项目) **重要说明:** 1. 对于故意添加的马赛克,传统方法只能模糊化处理 2. 高质量修复需原始图像统计信息或使用AI预测(如Adobe的Content-Aware Fill)
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

喵宁一

点赞是最好的赞赏~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值