微视linux 根文件系统之三 内核解压缩

本文深入解析了Linux内核中的initrd机制,详细介绍了如何通过设备树解析获取initrd的基地址和大小,以及如何将initrd解压缩到虚拟文件系统中。此外,还提供了多个关于initrd配置、解压、创建rootfs及启动流程的参考资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设备树解析,获取initrd基地址和大小

void __init early_init_dt_check_for_initrd(unsigned long node)
{
	unsigned long start, end, len;
	__be32 *prop;

	pr_debug("Looking for initrd properties... ");

	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
	if (!prop)
		return;
	start = of_read_ulong(prop, len/4);

	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
	if (!prop)
		return;
	end = of_read_ulong(prop, len/4);

	early_init_dt_setup_initrd_arch(start, end);
	pr_debug("initrd_start=0x%lx  initrd_end=0x%lx\n", start, end);
}

解压缩Initrd到虚拟文件系统

static char * __init unpack_to_rootfs(char *buf, unsigned len)
{
	while (!message && len) {
		decompress = decompress_method(buf, len, &compress_name);
		res = decompress(buf, len, NULL, flush_buffer, NULL, &my_inptr, error);
	}
}

Linux内核Ramdisk(initrd)机制
https://blog.csdn.net/leopard21/article/details/42319865

https://www.cnblogs.com/arnoldlu/p/10986583.html
ramdisk配置、解压、创建rootfs、启动简单分析

Linux2.6 内核的 Initrd 机制解析
https://www.ibm.com/developerworks/cn/linux/l-k26initrd/

Linux INITRAMFS 与 INITRD
http://blog.chinaunix.net/uid-25888519-id-3078218.html

rk3188--4.android用initrd文件系统启动流程
http://blog.chinaunix.net/uid-26009923-id-4074053.html

Documentation\filesystems\ramfs-rootfs-initramfs.txt
Documentation\early-userspace\buffer-format


解析Linux中的VFS文件系统
https://blog.csdn.net/u010424605/article/details/41842877

### 使用Python实现微视工业相机SDK的接口调用和图像采集 对于希望利用Python来操作微视工业相机的应用开发者来说,通常面临的主要挑战在于如何有效地桥接Python环境与原生C/C++ SDK之间的交互。鉴于大多数硬件制造商提供的SDK是以C或C++形式发布的,这要求开发者采取特定策略以确保两种编程语言间的无缝协作。 一种常见做法是在C/C++层面上创建一个中间件,该中间件能够被SWIG或其他类似的工具转换成可供Python使用的模块[^2]。此过程涉及编写必要的包装函数以便于暴露给Python的关键功能点,比如初始化设备、配置参数设置以及数据捕获等核心能力。一旦完成了这一阶段的工作,则可以在Python端导入生成好的库,并按照文档指导完成进一步的操作流程定义。 具体到微视工业相机SDK上,在成功构建了上述桥梁之后,可以通过如下方式执行基本的任务: #### 初始化连接 建立同摄像机通信的第一步通常是加载相应的驱动程序并启动会话。假设已经拥有了经过适当封装后的API访问权限,那么这部分工作可能看起来像这样: ```python import mvCameraControl as mvcam # 假设这是由C/C++编译得到并与Python兼容的模块名 camera = mvcam.Camera() # 创建一个新的相机实例对象 ret = camera.MV_CC_CreateHandle(None, "cam0") # 尝试打开指定ID编号为'cam0'的物理设备句柄 if ret != mvcam.SUCCESS: raise Exception(f"Failed to create handle with error code {ret}") ``` #### 设置属性 为了获取高质量的画面输出,往往还需要调整一些预设选项,例如分辨率、帧率或是曝光时间等等。这类设定一般都对应着具体的寄存器地址或者枚举类型的值,所以务必参照官方手册仔细核对每一个细节。 ```python # 设定目标宽度和高度 (单位像素) desired_width = 1920 desired_height = 1080 camera.MV_CC_SetEnumValue("Width", desired_width) camera.MV_CC_SetEnumValue("Height", desired_height) # 调整自动增益控制状态 auto_gain_state = True camera.MV_CC_SetBoolValue("GainAuto", auto_gain_state) ``` #### 开始抓取图片 当所有的前期准备工作完成后,就可以正式进入图像捕捉环节了。这里需要注意的是,实际应用中可能会涉及到多线程处理机制以提高效率;而对于简单的场景而言,同步模式下的单次读取也完全可以满足需求。 ```python def grab_one_image(camera_instance): buffer_size = ... # 计算所需缓冲区大小 image_buffer = bytearray(buffer_size) status = camera_instance.MV_CC_GetImageBuffer(image_buffer, ...) if status == mvcam.SUCCESS: process_image_data(image_buffer) # 对获得的数据做下一步析/保存等工作 else: log_error(status) # 处理错误情况 grab_one_image(camera) ``` 以上仅作为概念性的介绍框架,真实情况下还需依据具体情况做出相应修改优化。另外值得注意的一点是,不同品牌型号之间存在差异性,因此建议始终优先参考所使用产品的最新版本技术指南来进行开发活动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值