约瑟夫环的问题。
题目给你n,k。n即约瑟夫环的长度,k是淘汰掉从当前开始数的第k个人,然后问你被淘汰的最后三个人是谁。
逆向思维。如果某个人A是最后被淘汰掉的,当最后只剩下一个 人(即A)时,A一定是在0位置(我们从0位置开始,方便取余运算)。那么当只剩下两个人时,A的位置又是在哪呢?
引用下约瑟夫环的百度百科:
我们知道第一个人(编号一定是(m-1)%n) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始):
k k+1 k+2 ... n-2,n-1, 0, 1, 2, ... k-2
并且从k开始报0。
现在我们把他们的编号做一下转换:
k --> 0
k+1 --> 1
k+2 --> 2
...
...
k-3 --> n-3
k-2 --> n-2
序列1: 1, 2, 3, 4, …, n-2, n-1, n
序列2: 1, 2, 3, 4, … k-1, k+1, …, n-2, n-1, n
序列3: k+1, k+2, k+3, …, n-2, n-1, n, 1, 2, 3,…,k-2, k-1
序列4:1, 2, 3, 4, …, 5, 6, 7, 8, …, n-2, n-1
变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,相信大家都可以推出来:
∵ k=m%n;
∴ x' = x+k = x+ m%n ; 而 x+ m%n 可能大于n
∴x'= (x+ m%n)%n = (x+m)%n
得到 x‘=(x+m)%n
我们可以这样理解上面的公式,因为我们进行重新编号的时候,位置编号已经不是原来的位置编号,而是有了一个位移K,使所有的数的位置编号都移动了向左移动了K,如果我们要得到原来的位置编号,那么我们就要把这个当前的编号加上K才行,而K=m%n;,那么我们的问题就解决了。我们可以由一个人的当前位置编号得到它的上一次的位置编号,也就是说当我们知道A是最终的胜利者,并且A最后只有1个人的时候在位置0上,我们可以得出在只有两个人的时候,A在哪个位置上即(0+k)%2,如果递推下去,我们就可以得到n个人时,最后一个人的位置编号。
同理,我们要求倒数第二个被淘汰的人B的位置编号,我们只要在只有两个人时,得到不是的在A的位置位置,那么就是倒数第二个人被淘汰的位置编号(如果这时候A是0,那么B就是1,反之就是0),然后递推回去,我们就可以得到n个人时,B的位置编号。三个人同理。
最后把编号+1变成1到n的即可。
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
int f[500005];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,m,s=0,ans[3]={0};
int pos1,pos2,pos3;
scanf("%d%d",&n,&m);
f[1]=0;
for(int i=2;i<=n;i++)
{
f[i]=(f[i-1]+m)%i;
}
ans[0]=f[n]+1;
pos1=f[2]=(0+m)%2;
pos2=f[2]=(0+m)%2==1?0:1;
// printf("step=%d %d\n",pos1,pos2);
f[2]=pos2;
for(int i=3;i<=n;i++)
f[i]=(f[i-1]+m)%i;
ans[1]=f[n]+1;
bool vis[3]={0};
vis[(pos1+m)%3]=1;
vis[(pos2+m)%3]=1;
for(int i=0;i<3;i++)
{
if(vis[i]==0)
pos3=i;
}
f[3]=pos3;
// printf("step3=%d %d %d \n",pos1,pos2,pos3);
for(int i=4;i<=n;i++)
{
f[i]=(f[i-1]+m)%i;
}
ans[2]=f[n]+1;
printf("%d %d %d\n",ans[2],ans[1],ans[0]);
}
return 0;
}